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Abstract. Surrogate modelling has proven to be an effective strategy for time-efficient analysis and 
optimisation of expensive functions such as manufacturing process simulations. However, most 
surrogate approaches generate problem-specific “one-off” models, which cannot be reused in other, 
even similar scenarios. Hence, variations of the problem, e.g. minor geometry changes, instantly 
invalidate the surrogate. Image-based machine learning (ML) techniques have been proposed as an 
option to train a surrogate for variable geometries. However, it is currently unclear how to construct 
a sufficiently diverse set of generic training geometries and what effect different databases have. 

This work investigates the effect of different databases on the prediction accuracy of an ML-
assessment of component manufacturability. The considered use-case is textile forming (draping) of 
a woven fabric. Sampling plans generate different numbers of training geometries, which are in turn 
evaluated in draping simulations. An image-based ML-algorithm is trained on these process samples 
and evaluated on a set of validation geometries. Results show that the diversity of the training 
geometries has a greater impact on the prediction accuracy than the number of samples. The results 
also hint that a comparably low number of geometry samples suffices to give meaningful results. 
With these findings, ML-techniques are considered a promising and time-efficient tool for 
manufacturability assessment at early stages of part and process design. 

Introduction 
Most industrial manufacturing processes require careful engineering of component design, 

manufacturing process and material to ensure acceptable part quality, cycle time and cost [1]. While 
for most processes the governing physics are well understood, efficiently determining a process 
optimum for a given geometry is still a profound question, though [2]. In many cases, companies rely 
on empirical best-practice guidelines in combination with experimental trials. Although such 
approaches often yield satisfactory results, they often entail significant rework for error correction 
and process fine-tuning [3]. 

This holds all the more for complex processes and materials such as composites and makes process 
optimisation a significant concern during part development. Flexible manufacturing technologies, 
shrinking lot sizes and shorter development cycles (”mass customisation”) further compound this 
situation as they require ever more frequent process reconfigurations [4]. 

To reduce the experimental work during process optimisation, high-fidelity simulation methods, 
e.g. based on Finite Elements (FE), are used. They allow for a rigorous virtual analysis of the process 
dynamics prior to experimental trials and may provide additional information when experimental 
evidence is scarce [5]. In combination with optimisation algorithms, they also allow for automated 
search of optimal parameters – often referred to as “virtual process optimisation” [6-8]. However, the 
computational effort for iterative optimisation often renders them impracticable in practice. 

One option to reduce the computational burden in virtual process optimisation is surrogate-based 
optimisation (SBO) [9]. Surrogates are numerically efficient, data-driven approximations of 
expensive simulations. Once trained, the surrogate guides the optimiser in the parameter space and 
concentrates costly simulations on the most promising variants. For material forming, as considered 
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in this work, a rich corpus of SBO applications examples exists [10-14], yet employing surrogates for 
component design is just at the beginning. For instance, Horton et al. relate geometry parameters to 
experimental and numerical forming results [15]. Similarly, FE forming simulations have been used 
to devise design maps for preselected geometry features in metal and textile forming [16,17]. 

Most of the current surrogate-approaches require an a-priori definition of geometry parameters 
such as corner radii or draft angles. Although remarkable results have been achieved, this limits their 
applicability to a pre-defined geometry class. This may be sufficient in case of recurring geometries, 
e.g. standard parts from norms, yet the evaluation of geometries outside the parameterisation scheme 
proves difficult. Also, most surrogate approaches predict scalar- or low-dimensional features only, 
e.g. maximum strain. Predictions of field quantities are rarely considered, although they provide 
valuable engineering information, e.g. the location of defects. See [14,14] or [18] for example 
implementations. 

Machine Learning (ML) techniques using convolutional neural networks (CNN) have been 
proposed as a potential remedy, see e.g. [19,20] for examples from fluid mechanics and fabric 
forming. Unlike classical surrogates, CNNs interpret images and allow to describe the geometry 
through pixels or voxels in a grid-wise manner instead of distinct geometry parameters. This approach 
is more generalisable, but brings about sampling difficulties: For classical parameter spaces, so-called 
space-filling sampling plans have been developed to build a training database, e.g. Latin Hypercube 
Sampling. However, for a non-parametric problem, such space-filling strategies do not exist 
currently. In [19,20] for example, the authors randomly vary size, location and orientation of 
primitives (triangle, rectangles, ellipses, …), but give no justification as to why they proceeded this 
way. They neither study different training database compositions or sample sizes. 

This work aims to illustrate the effect of different databases on prediction accuracy of an image-
based ML-assessment of component manufacturability. Textile forming (draping) of a plain-weave 
woven fabric is taken as an example use case. To this end, two generic geometry classes (GC) are 
defined, which show different forming-relevant features, e.g. single vs. double curvature. From these 
GCs different numbers of samples are drawn and evaluated in textile forming simulations, which 
constitutes the database for ML-training. To keep the computation time 𝑡𝑡sim within reasonable bounds 
for this study of different databases with hundreds of simulations, a simplified kinematic simulation 
(𝑡𝑡simkin ≈ 1.3 min) approach is chosen over an FE-simulation (𝑡𝑡simfem ≈ 32 min). However, as the 
algorithm’s learning behaviour is unaffected of the underlying simulation approach, the results are 
deemed equally valid for both. 

On each of the databases, an image-processing ML-algorithm is trained. After training, its 
performance is validated against actual simulations in two steps: At first, against separate validation 
geometries from the GC and, second, against a common benchmark geometry outside the GC. 
Thereby the generalisation capabilities of different databases can be compared. 

Modelling Approach 

Conceptual View. Formally, this work views a forming simulation as a function 𝜑𝜑sim: 𝐺𝐺 ↦ 𝑄𝑄, 
which maps an input geometry 𝑔𝑔 ∈ 𝐺𝐺 to a part quality attribute 𝑞𝑞 ∈ 𝑄𝑄. In material forming, as 
considered in this work, the part quality is often quantified by material strain. In-plane shear is the 
main deformation mode for woven fabrics. Due to progressive yarn compaction and according in-
plane compressive stress accumulation, excessive shear increases the likelihood of forming defects 
such as wrinkling or textile folding and poor resin permeability. Thus, the shear angle 𝛾𝛾12 is a 
frequently used quality measure in fabric draping and is usually sought to be minimised 

As the evaluation of 𝜑𝜑sim is generally costly, a numerically efficient substitute function 𝜇𝜇ML (the 
surrogate) is sought to approximate 𝜑𝜑sim. Please note that 𝜑𝜑sim can be evaluated but is otherwise 
unknown (‘black-box’-conditions). This excludes analytical approximation techniques such as 
Taylor-Series and leaves data-driven approximations as the only viable option to build the surrogate. 

For a data-driven approximation, a highly flexible model function 𝜇𝜇ML is selected and fitted to a 
dataset 𝐷𝐷𝑇𝑇 with observation samples (training). In general, different model functions are at disposal 
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ranging from simple polynomials to advanced techniques such as Gaussian Process Regression, 
Support Vector Machines and Artificial Neural Networks (ANN) [21]. 

Neural Networks. Their extraordinary modelling capacity makes ANNs so-called universal 
approximators [22]. That is, given sufficient training data, they can reproduce any continuous 
function regardless of its complexity. ANNs are typically organised in a layer-structure with each 
layer containing a predefined number of neurons. When processing data, these neurons are activated 
or deactivated through weighting and summation operations. Thereby, complex activation patterns 
form within the layers. The last layer converts these patterns to an output quantity for engineering 
interpretation. 

The weights and biases of the ANN are free network parameters 𝜽𝜽 which are collectively tuned to 
match supplied samples in the training database 𝐷𝐷T. The optimal parameters 𝜽𝜽∗ are the ones which 
minimise the loss-function 𝐿𝐿, i.e. the error between 𝜇𝜇ML’s estimation 𝜸𝜸�12 and the ground truth 𝜸𝜸12 

 
𝜽𝜽∗ = arg min

𝜽𝜽
𝐿𝐿(𝜸𝜸�12,𝜸𝜸12) . (1) 

 
Please note that, in this case 𝜸𝜸12 and 𝜸𝜸�12 are field quantities stored in vector-format, e.g. 𝜸𝜸12 =

(𝛾𝛾121 , 𝛾𝛾122 , . . . , 𝛾𝛾12
𝑛𝑛el) with 𝛾𝛾12𝑘𝑘  denoting the shear angle of element 𝑘𝑘 = 1,2, . . . ,𝑛𝑛el. 

In general, different error metrics can be used, while this work employs the 𝐿𝐿2-metric, also known 
as mean squared error MSE: 

 
𝐿𝐿 = 𝐿𝐿2 = 1

𝑛𝑛𝑇𝑇
∑ �𝜸𝜸�12𝑖𝑖 − 𝜸𝜸12𝑖𝑖�

2𝑛𝑛𝑇𝑇
𝑖𝑖=1  , (2) 

 
with 𝑛𝑛𝑇𝑇 being the number of training samples in the database. 

To evaluate 𝜇𝜇ML’s performance on new data, it is common practice to hold out a separate set of 
data during training – the validation set 𝐷𝐷V. While parameter optimisation is done on the training set 
𝐷𝐷T only, the loss on 𝐷𝐷V informs about generalisation capabilities of the ANN. To ensure comparability 
between the algorithms, only the samples number 𝑛𝑛𝑇𝑇 of 𝐷𝐷T is varied. The validation database 𝐷𝐷V is 
kept constant. 

Data Representation. The following idea was originally proposed in [20] and is only briefly 
reiterated here: In stamp forming processes, component geometries must necessarily be undercut-free 
to avoid collision during tool-closure. This allows to describe the geometry by its elevation ℎ(𝑥𝑥,𝑦𝑦) 
above the tool plane. Analogous to a topographic map, ℎ can then be efficiently described by 
greyscale-values as Fig. 1 shows. 

The greyscale values GS range from 0 to 255, while 0 (‘black’) denotes ℎ = 0 mm and 255 
(‘white’) corresponds a predefined maximum elevation ℎ𝑚𝑚𝑚𝑚𝑚𝑚. In this work ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 150  mm was 
chosen, but depending on the application other dimensions may be used. 

The strain field can also be encoded in a greyscale-image: For the simulation, the fabric is 
discretised into 𝑛𝑛𝑒𝑒𝑒𝑒 elements which undergo deformation during forming. Plotting the elemental 
strains into the undeformed fabrics then yields a 2D-representation of the forming result, which can 
again be conveniently represented as an image. 

Both, the greyscale images for the geometry and the strain field constitute a pair of values for 
training of the network for end-to-end learning of the forming dynamics. 
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Fig. 1: Image-based data representation as proposed in [20]. 

Neural Network Architecture. Convolutional neural networks (CNN), are deliberately designed 
to take advantage of spatially structured data like images and are thus used in this work. More 
specifically, this work employs a CNN-architecture from prior work for end-to-end training of 𝜇𝜇ML. 
See [20] for details. In essence, CNNs slide (‘convolve’) a pre-defined number of templates 
(‘kernels’) across an input image and continuously measure the degree of coincidence. Depending on 
the local degree of coincidence, neurons in the subsequent layer are activated and so-called ‘feature 
maps’ form. The repeated application on subsequent network layers (‘deep learning’) forms higher-
order feature maps, which are essentially a compressed representation of forming-relevant 
information. The second part of the network then interprets this compressed information through 
repeated transpose-convolutional operations. One evaluation of 𝜇𝜇ML plus data loading into memory 
takes about 𝑡𝑡evl ≈ 0.45 𝑠𝑠 on an nVidia™ RTX 2080 Ti graphics card – a significant reduction 
compared to simulation efforts 𝑡𝑡simkin  and 𝑡𝑡simfem, respectively. 
Study procedure 

Geometry parameterisation. Two separate classes of generic geometries are considered – GC 1 
and GC 2. To study the effect of different databases, 𝜇𝜇ML is at first trained separately on GC 1 and 
GC 2 and subsequently on a combination of both. In order to generate an arbitrary number of training 
samples 𝑛𝑛T, a parametric CAD-model is generated. For both geometries the equation  

1 = � 𝑦𝑦
𝑦𝑦max

�
𝑝𝑝

+ � 𝑧𝑧
𝑧𝑧max

�
𝑝𝑝
  (3) 

describes the component surface contour line. Therein, 𝑦𝑦max and 𝑧𝑧max denote the largest 𝑦𝑦- and 𝑧𝑧-
coordinate of the component. Fig. 2 visualises equation (3) along with some contour examples. For 
GC 1 the contour is rotated about the 𝑧𝑧-axis (360° rotation); for GC 2 the contour is at first mirrored 
at the 𝑥𝑥𝑥𝑥-plane, indicated by dashed lines and then rotated about the 𝑦𝑦-axis by ±90°.  

 

Fig. 2: Visualisation of the contour line parameterisation for geometry sampling. 
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By variation of 𝑝𝑝, Equation (3) yields a set of highly diverse geometries, ranging from cones  
(𝑝𝑝 = 1), spheres/ellipses (𝑝𝑝 = 2) to near-cylindrical structures (𝑝𝑝 ≫ 2). Their height and aspect ratio 
can be varied through 𝑧𝑧max and 𝑦𝑦max, respectively. In this work, the parameter range 1 ≤ 𝑝𝑝 ≤ 6, 
50 mm ≤ 𝑦𝑦max ≤ 150 mm and 0.05 ≤ 𝑧𝑧max 𝑦𝑦max⁄ ≤ 1.0 has been investigated, while any sharp 
edges are rounded with the radius  𝑟𝑟 = 10 mm. Fig. 3 a) highlights the axis of rotation and Fig. 3 b) 
shows some geometry samples. For comparison of the two geometry classes, each sample from GC 1 
(top) has a counterpart from GC 2 obtained with the same values for 𝑝𝑝, 𝑦𝑦max, 𝑧𝑧max. 
 

 
Fig. 3: a) Geometry sampling by rotation of the contour line around the z-axis (GC 1) and y-axis (GC 2), 

b) geometry samples for GC 1 and GC 2 for visualisation, 
c) Validation geometry outside GC 1 and GC 2 (‘double-dome’).  

Database and validation geometries. Using Latin Hypercube Sampling, from both geometry 
classes five different-sized training databases 𝐷𝐷T are sampled with 𝑛𝑛T = {5, 10, 25, 50, 100} samples. 
Additionally, for each GC a separate validation 𝐷𝐷V is sampled with 20 validation geometries to assess 
𝜇𝜇ML’s performance on unseen geometry samples. 

Ultimately, a test geometry outside GC 1 and GC 2 is evaluated, the so-called ‘double-dome’ as 
shown in Fig. 3 c). It is a common benchmark geometry in stamp forming as it features several 
forming-relevant characteristics such as single- and double-curved areas as well as convex and 
concave regions. Please note that – despite some similarity – neither GC 1 nor GC 2 can exactly 
reproduce the double-dome. 

Network training. As the network’s parameters 𝜽𝜽 are initialised randomly, individual training 
runs show scatter. Thus, for each training database 𝐷𝐷T ten independent training runs are performed 
and their average and 95 % confidence interval evaluated. The prediction quality is measured by the 
loss 𝐿𝐿, the mean absolute error of the shear angle maximum 𝑀𝑀𝑀𝑀𝑀𝑀(𝛾𝛾max), the mean absolute error of 
the maximal shear difference 𝑀𝑀𝑀𝑀𝑀𝑀(max(∆𝛄𝛄)), the coefficient of determination 𝑐𝑐d and the Pearson 
correlation coefficient 𝑟𝑟. See the appendix for the metrics’ definition. The metrics serve different 
purposes: While L, 𝑀𝑀𝑀𝑀𝑀𝑀(𝛾𝛾max) and  𝑀𝑀𝑀𝑀𝑀𝑀(max(∆𝛄𝛄)) measure absolute discrepancies, 𝑐𝑐d and  𝑟𝑟 
inform about the spatial correlation between ground truth and estimated strain fields. Loosely 
speaking, the latter measure how well 𝜇𝜇ML is able to locate peaks in strain field. Training of 𝜇𝜇ML is 
done using the ADAM optimiser for 𝑘𝑘ep = 750 epochs. A pre-study showed that a learning rate 
𝛼𝛼LR = 5 ⋅ 10−5 and a batch size of 1 gave best results. With these settings one gradient-descent takes 
at average 𝑡𝑡gd ≈ 0.027 s per batch in each epoch. The total training time 𝑡𝑡trn depends on the number 
of training samples 𝑛𝑛T and amounts to 𝑡𝑡trn = 𝑡𝑡gd ⋅ 𝑘𝑘ep ⋅ 𝑛𝑛T = 0.027 s ⋅ 750 ⋅ 𝑛𝑛T = 20,25 s ⋅ 𝑛𝑛T. 
Thus, it ranges between  101.25 s ≤ 𝑡𝑡trn ≤ 2025 s for 𝑛𝑛T = 5 and 100 geometries, respectively. 
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Results & Discussion 

Training progress. Fig. 4 visualises 𝜇𝜇ML’s training progress as measured by the loss 𝐿𝐿 for two 
exemplary database sizes of GC 1, namely 𝑛𝑛T = 10 and 50 samples.  

  
a) Loss on training geometries b) Loss on validation geometries 

Fig. 4: Training progress of 𝜇𝜇𝑀𝑀𝑀𝑀 during training on GC 1. 

Fig. 4 a) shows the loss on training data averaged over ten training runs. Like a regular surrogate, 
for both 𝑛𝑛T = 10 and 𝑛𝑛T = 50 the loss 𝐿𝐿 approaches zero in a roughly monotonous manner. Loosely 
speaking, the networks learns to reproduce the training data. The loss on the validation data (Fig. 4 
b) ), however, reveals a difference: While the graph still approaches almost zero (𝐿𝐿 ≈ 1°2) for  
𝑛𝑛T = 50, for 𝑛𝑛T = 10 an error of 𝐿𝐿 ≈ 6°2 persists. This implies that 10 training samples do not 
contain sufficient information for an accurate generalisation to new geometries from GC 1, but 50 do. 
Consequently, a threshold number of training geometries must exist, beyond which the prediction 
accuracy stays approximately constant. This threshold is closer examined in the following. 

Performance on validation data. Fig. 5 shows the evolution of the performance metrics on the 
validation data for different training samples 𝑛𝑛𝑇𝑇. More specifically, it shows the average of the best 
achieved values and their 95 % confidence intervals across ten separate training runs. Fig. 5 splits into 
two separate plots. Plot a) shows metrics measuring absolute differences, whereas plot b) shows 
statistical correlation measures between prediction and ground truth. 

  
a) b) 

Fig. 5: Performance metrics of 𝜇𝜇𝑀𝑀𝑀𝑀 on validation data (inside of geometries) for different sizes of the training 
database after training on GC 1. Clearly, 𝜇𝜇𝑀𝑀𝑀𝑀’s performance improves with 𝑛𝑛𝑇𝑇. 

Similar behaviour is found for training on GC 2.  

Please note that the sense of prediction quality is opposite in both: In plot a), a perfect estimation 
implies zero error metric, in plot b) 𝑐𝑐d = 𝑟𝑟 = 1 denotes a perfect estimation. 
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In both plots the performance metrics constantly improve with increasing 𝑛𝑛𝑇𝑇. However, for 𝑛𝑛T ≥
50, the metrics improves only moderately, which indicates the aforementioned threshold. 
Interestingly, for the correlation metrics 𝑐𝑐d and 𝑟𝑟 this threshold seems to appear a little earlier (𝑛𝑛T ≥
25). This may indicate that it is easier to learn the spatial relation between shear strains rather than 
absolute values but requires further investigation for confirmation. Similar behaviour is found for 
GC 2, although better metrics are observed for 𝑐𝑐d (0.75 < 𝑐𝑐d < 1.0) and 𝑟𝑟 (0.85 < 𝑟𝑟 < 1.0). To 
avoid redundancy, the graphs are omitted here. 

Performance on test data outside training geometries. Similar to a classical surrogate, when 
evaluating geometries inside the training geometry classes, 𝜇𝜇ML’s accuracy improves with the size of 
the training database (Fig. 5). However, as outlined in the introduction, when aiming for 
generalisation to arbitrary geometries, the accuracy on geometries outside the class of generic training 
geometries is important. 

To this end, the double-dome (cf. Fig. 3 c) is taken as a benchmark geometry. Fig. 6 plots the 
according performance metrics against 𝑛𝑛T: a) after training on GC 1, b) after training on GC 2. 
Surprisingly, in both cases varying 𝑛𝑛T has little effect and the graphs remain approximately constant; 
at most the accuracy increases moderately in sub-image a), i.e. when training on GC 1. 

 

 
a) Training on GC 1 b) Training on GC 2 

Fig. 6: Performance metrics of 𝜇𝜇𝑀𝑀𝑀𝑀 on the double-dome geometry (outside of geometry class) for different 
sizes of the training database. Unlike Fig. 5, 𝜇𝜇𝑀𝑀𝑀𝑀’s performance hardly improves with more training samples 

but stays constant. At the same time, a large difference can be observed between GC 1 and GC 2, 
i.e. the composition of the training data. 

However, comparing the sub-images a) and b) reveals a great difference: When training on GC 1, 
the loss 𝐿𝐿 amounts at best to 𝐿𝐿 ≈ 68°2, while only 𝐿𝐿 ≈ 20°2 is found for GC 2 –  a ≈ 70 % difference. 
Equally large differences are observed for the other metrics. This hints that GC 2 holds more useful 
information than GC 1 for training of 𝜇𝜇ML. This statement holds independent of the number of 
samples since 𝑛𝑛𝑇𝑇 = 5 (GC-2) already outperforms 𝑛𝑛𝑇𝑇 = 100. For completeness, 𝜇𝜇ML has also been 
trained on a combined database, i.e. GC 1+2. However, the resulting plots are practically identical to 
Fig. 6 b) and are omitted to avoid redundancy.  
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Overall, the results show that samples from GC 1 contribute only marginally to 𝜇𝜇ML’s 
performance. Thus, when aiming for full generalisation, carefully selecting the training geometries 
classes is far more important than the sheer number of samples per class. In surrogate modelling and 
deep learning this phenomenon is sometimes casually summarised by “smart data outperforms big 
data”. Although it is admitted that this work does not truly use “big data”, i.e. overwhelmingly large 
and complex datasets, but well-defined and carefully curated data sets. 

For a visual assessment of the 𝜇𝜇ML’s estimations, Fig. 7 shows the estimated and the simulated 
strain field for the double-dome in three sub-images a)-c): It visualises the results after training 
a) on GC 1, b) on GC 2 and c) on both GC 1+2. In each case 𝑛𝑛T = 100 samples were in the database. 
The strain field difference ∆𝜸𝜸 = 𝜇𝜇ML(𝑔𝑔dd) − 𝜑𝜑sim(𝑔𝑔dd) is also given and allows the analysis of local 
over- and underestimations. For ease of readability, each plot also quantifies its maximum absolute 
values. 

 

 
Fig. 7: Comparison of the shear strain estimation by 𝜇𝜇𝑀𝑀𝑀𝑀 and a forming simulation along with a plot of the 

differences. 

Fig. 7 a) clearly shows that 𝜇𝜇ML’s estimation resembles the simulation result only regarding the 
vertical and horizontal shear bands with a local maximum at their intersection. Their location and 
width, however, differ significantly. Also, 𝜇𝜇ML substantially underestimates the shear angles 
(red areas in difference plot). At the same time, it predicts shear strains in the image centre (cf. black 
ellipsis in difference plot). However, no shear deformation can occur there since the double-dome 
only shows single curvature in its centre. This overestimation takes place because all geometries in 
GC 1 are rotation-symmetric and none of them feature straight areas. As a consequence, 𝜇𝜇ML remains 
uninformed, how straight parts behave during forming. 
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In Fig. 7 b), i.e. training on GC 2, the results have significantly improved: The horizontal and 
vertical shear bands and their intersection with a local maximum match far better the simulation 
results – not just qualitatively but also quantitatively. Also, the erroneous shear deformation in the 
centre do not occur. Since GC 2 encompasses samples with straight areas (cylinder form 𝑝𝑝 ≫ 2), 𝜇𝜇ML 
learns that straight component features evoke no shear. 

Training 𝜇𝜇ML on a combination of the available samples of GC 1 and GC 2 improves the results 
only marginally as Fig. 7 c) shows. It is to the widest extent identical to sub-image b) except for a 
minimally improved accuracy regarding the maximum shear strain. From the perspective of 
surrogate-modelling, this has the advantage that combining geometry classes does not deteriorate the 
surrogate performance, even if the added geometry class introduces no relevant information. 
Consequently, adding geometries to the database at best helps improve the surrogate and has at worst 
no effect, i.e. is conservative. 

It may be noted that neither of the estimations in a)-c) is able to reproduce the thin shear bands 
near the main deformation zone (cf. white ellipsis in c) ). This shear band stems from a doubly-curved, 
concave indentations of the double-dome (cf. Fig. 3 c) ). Yet, like with the straight geometry features, 
neither GC 1 nor GC 2 comprise concave geometry samples thus 𝜇𝜇ML remains unaware of their effect 
on shear deformations. 

Summary and Conclusion 
This work studies the effect of two different classes of generic geometries to train an image-based 

ML-surrogate for manufacturability assessment of variable geometries. The first geometry class 
primarily varies the out-of-plane curvature, the second in-plane curvature. Additionally, a combined 
database with samples from both geometry classes is studied. The considered use-case is forming of 
a plain-weave woven fabric. For each geometry class five different-sized sets of training geometries 
are sampled and their forming results evaluated in a forming simulation. On these process samples, 
an image-based ML-algorithm 𝜇𝜇ML from prior work [20] is trained. After training, 𝜇𝜇ML is evaluated 
on a set of validation geometries from the class of training geometries and on a benchmark geometry 
outside the geometry class. 

Results show that 𝜇𝜇ML consistently improves its accuracy for new geometries within the class of 
training geometries, when the number of training geometries increases. However, this does not hold 
for geometries outside the training geometry class. In this case, the prediction accuracy is nearly 
independent of the number of training samples. Instead, the geometry class itself – more precisely, 
their geometry features – has by far the largest impact on the prediction accuracy. The results also 
show, that geometry classes can be combined without impairing the prediction accuracy, even if the 
added geometry class provides little additional information. That is, adding geometries is 
conservative. 

The findings suggest that carefully engineering and selecting the classes of generic training 
geometries is more important than the sheer number of samples. Loosely speaking, the findings 
support the notion of “smart data outperforms big data”. When aiming for a fully generalised 
surrogate, follow-up studies need to investigate, which geometry characteristics are most important 
to be covered during training. This work already highlights the importance of single and double 
curvature areas as well as convex and concave features, but other features – and according test 
geometries – may be added in the future. 
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Appendix 
Metric definitions: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝛾𝛾max) = mean[max(𝜸𝜸�12𝑖𝑖) −max(𝜸𝜸12𝑖𝑖)] Mean absolute error of the maximal 
true and estimated strain 

𝑀𝑀𝑀𝑀𝑀𝑀(max(∆𝛄𝛄)) = mean[max(|𝜸𝜸�12𝑖𝑖 − 𝜸𝜸12𝑖𝑖|)] Mean absolute error of the maximal 
strain difference 

𝑐𝑐d = 1 −
∑ �𝜸𝜸12𝑖𝑖 − 𝜸𝜸�12𝑖𝑖�

2
𝑖𝑖

∑ �𝜸𝜸12𝑖𝑖 − mean(𝜸𝜸12)�
2

𝑖𝑖

 Coefficient of Determination [23] 

𝑟𝑟 =
∑ �𝜸𝜸�12𝑖𝑖 − mean(𝜸𝜸�12)� �𝜸𝜸12𝑖𝑖 − mean(𝜸𝜸12)�𝑖𝑖

�∑ �𝜸𝜸�12𝑖𝑖 −mean(𝜸𝜸�12)�
2

𝑖𝑖 �∑ �𝜸𝜸12𝑖𝑖 − mean(𝜸𝜸12)�
2

𝑖𝑖

 Pearson correlation coefficient [23] 
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