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Lightweight Engineering

▪ Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

▪ Early assessment of manufacturability

▪ Structural simulation with manufacturing effects

▪ Reduction of expensive prototype trials

▪ Computation efforts (iterative optimisation!)

Goal: Accelerate process optimisation

▪ Integration of prior knowledge from similar

components via Machine Learning (ML)
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(Resin-Transfer-Moulding, RTM)
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Lightweight Engineering

▪ Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

▪ Early assessment of manufacturability

▪ Structural simulation with manufacturing effects

▪ Reduction of expensive prototype trials

▪ Computation efforts (iterative optimisation!)

Goal: Accelerate process optimisation

▪ Integration of prior knowledge from similar

components via Machine Learning (ML)

▪ Studied example: Forming of engineering textiles
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Virtual process optimisation

▪ Process simulation as function 𝜑 ∶ 𝑃 ↦ 𝑄

▪ Goal: Optimal parameters 𝒑opt with 𝑞opt = 𝑞 𝒑opt ՜
!
min

▪ Classical approach: Optimisation algorithms

Challenge

▪ Complex objective, multiple parameters

՜ numerous iterations ՜ computation time grows

Option to increase efficiency

▪ Integration of “prior knowledge” into optimisation

▪ Thought experiment
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Research outset

State of the Art
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Prior knowledge

▪ Numerically efficient approximation (‚Surrogate‘)

𝜇srg: 𝑃 ↦ 𝑄

mit   𝜇srg ≈ 𝜑

▪ Data-driven

Surrogate-based optimisation (SBO)

▪ Surrogate guides the optimiser in the search space

▪ Concentrate simulations on most promising regions

▪ Feedback of new observations
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Surrogate-based optimisation

State of the Art
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Gripper-assisted textile forming [Zimmerling et al. 2021]

▪ FE forming simulation

(Fabric model [Poppe et al. 2018, 2019] )

▪ Optimisation of material intake

(60 adjustable grippers)

▪ Goal: Minimisation of shear strain 𝜸

Comparison: with and without surrogate

▪ SBO converges faster than direct optimisation

▪ Fewer simulations calls to reach optimum

Clamping frame with grippers [Albrecht et al., 2019 (Fh ICT)]
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Surrogate-based Optimisation | Application example

State of the Art 

Example plot of the shear strain 𝜸 after forming
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Surrogates …

▪ … support convergence in many cases, …

▪ …but they are typically task-specific “one-off” models

՜ task variations difficult to capture (geometry change, …)

՜ each component requires re-sampling and re-training

Idea

▪ ML-techniques can learn complex system dynamics

՜ suitable for a generalised surrogate?
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Research Gap

State of the Art

𝜇srg 1 ≠ 𝜇srg 2

𝑔1 𝑔2
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Hypothesis 1

ML and process simulation can be combined to extract 

knowledge from generic process samples and apply it

to a new geometry

Hypothesis 2

Once trained, such a generalised ML-model speeds up an 

optimisation like a classical, geometry-specific surrogate

Generic
geometry samples

Generic
process parameters

Simulation of part
quality

Research hypotheses
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Idea

▪ Replace the classical surrogate 𝜇srg ∶ 𝑃 ↦ 𝑄 + Optimisation

by a more general funktion 𝜇 ∶ 𝐺 ↦ 𝑃∗

Reinforcement Learning [Sutton and Barto, 2018]

▪ Trial-Error-Training in a simulation environment

▪ Algorithm is rewarded if part quality improves

▪ Goal: Maximise total „reward“
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Concept

Process optimisation for variable geometries
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Geometry encoding

▪ Close spatial relation between

geometry and material strain [Zimmerling et al. 2019]

▪ Well representable in greyscale-images

▪ Usage of image processing ML-techniques

(Convolutional neural networks, CNNs)

▪ Two-step function models 𝜇 [Zimmerling et al. 2020]

1. 𝜇1 : Estimation of strain field 𝜸

2. 𝜇2 : Interpretation of the strain field and

estimation of beneficial process parameters
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Process recommendation
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Database with draping samples

Visualisation example

Process optimisation for variable geometries

M
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Images from [Trippe, 2019]

Training of 𝜇1

▪ Database with draping simulation samples

▪ Training: Iterative adaption of network parameters to minimise MSE

՜ Images well suited to describe arbitratry forming geometries
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Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

▪ FE fabric model [Poppe et al. 2018, 2019]

on geometry catalogue of cuboids

▪ Process manipulation by pressure pads

▪ Goal: Smoothest possible draw-in

՜ textile curvature measures quality
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Application example

Optimisation of variable geometries
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Training progress with Reinforcement Learning [Zimmerling et al. 2020, 2022b]

▪ Sampling phase to gather observations

▪ Successful minimisation of curvature across…

▪ 14 training geometries

▪ 5 validation geometries (hidden)
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After training [Zimmerling et al. 2020, 2022b]

▪ Testing on new geometry variants

▪ Doubly symmetric and  mostly convex

▪ No subset of the cuboids

Observation

▪ ML recommendations follow geometry variation

▪ Useful process recommendation

(10% deviation from ‚true‘ optimum)
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Hypothesis 1

ML and process simulation can be combined to extract 

knowledge from generic process samples and apply it

to a new geometry
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Training continuation [Zimmerling et al. 2020, 2022b]

▪ Process recommendations useful,

but not strictly optimal

Thus

▪ Continuation of training on

envisaged target geometry

▪ Convergence towards optimum

▪ Gradual reduction of textile curvature

՜ successful process optimisation

for target geometry
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Optimisation approach comparison

▪ Direct (GA, no surrogate)

▪ SG  (classical surrogate)

▪ ML (geometry-informed surrogate)

Observation

▪ SG and ML faster than direct

՜ Integration of prior knowledge

▪ ML more efficient than SG

՜ Geometry-specific sampling saved

Note on ML-pretraining

▪ Substantial prior effort required

▪ Decoupling of pre-training and deployment
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Hypothesis 2

Once trained, such an generalised ML-model speeds up an 

optimisation like a classical, geometry-specific surrogate

Application example | Training results

Optimisation of variable geometries
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Initial situation

▪ Surrogate models speed up optimisation procedures,

but prove unwieldy for variable geometries

Methodology

▪ ML-based optimisation for variable geometries

▪ Validation on new geometries and

comparison to classical optimisers

Results

▪ Process dynamic can be learned from generic samples

▪ Useful process recommendations after training

▪ Recommendations converge to optimum
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Efficient process optimisation

Summary
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Use case

▪ More complex scenarios

▪ Geometry, process parameters,…

▪ Other manufacturing processes

Integration of prior knowledge [Raissi et al. 2019]

▪ Integration of known physics into training (PINNs)

՜ physically-consistent surrogate for optimisation [Würth 2022]

More advanced ML-techniques

▪ Graph neural networks for further generalisability
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Efficient process optimisation

Outlook
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