

Machine learning algorithms for efficient process optimisation of variable geometries at the example of fabric forming

Lionel Fourment PhD-Prize for Industrial Research

20 April 2023 26th ESAFORM in Krakow, Poland

Clemens Zimmerling

Institute of Vehicle Systems Technology – Lightweight Design Karlsruher Institute of Technology

Motivation

Overview

Lightweight Engineering

Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

- Early assessment of manufacturability
- Structural simulation with manufacturing effects
- Reduction of expensive prototype trials
- Computation efforts (iterative optimisation!)

Goal: Accelerate process optimisation

 Integration of prior knowledge from similar components via Machine Learning (ML)

Example virtual process chain for continuous-fibre reinforced plastics (Resin-Transfer-Moulding, RTM)

2

26th ESAFORM

20 April 2023

Motivation

Overview

Lightweight Engineering

Lightweight potential ↔ Engineering efforts

Process simulation for engineering design

- Early assessment of manufacturability
- Structural simulation with manufacturing effects
- Reduction of expensive prototype trials
- Computation efforts (iterative optimisation!)

Goal: Accelerate process optimisation

- Integration of prior knowledge from similar components via Machine Learning (ML)
- Studied example: Forming of engineering textiles

adapted from [Kärger et al. 2015]

Agenda

State of the art and research hypotheses

Summary and outlook

26th ESAFORM 20 April 2023

- Integration of "prior knowledge" into optimisation
- Thought experiment

26th ESAFORM

20 April 2023

ML-algorithms for efficient process optimisation of variable geometries **Clemens Zimmerling**

Institute of Vehicle System Technology

State of the Art

Research outset

State of the Art

Surrogate-based optimisation

Prior knowledge

Numerically efficient approximation (,Surrogate')

 $\mu_{\rm srg} \approx \varphi$

mit

Data-driven

26th ESAFORM

20 April 2023

Pre-sampled database

Surrogate-based optimisation (SBO)

- Surrogate guides the optimiser in the search space
- Concentrate simulations on most promising regions
- Feedback of new observations

State of the Art

Surrogate-based Optimisation | Application example

Gripper-assisted textile forming [Zimmerling et al. 2021]

- FE forming simulation (Fabric model [Poppe et al. 2018, 2019])
- Optimisation of material intake (60 adjustable grippers)
- Goal: Minimisation of shear strain γ

Clamping frame with grippers [Albrecht et al., 2019 (Fh ICT)]

Example plot of the shear strain γ after forming

Comparison: with and without surrogate

- SBO converges faster than direct optimisation
- Fewer simulations calls to reach optimum

Lightweight Engineering Institute of Vehicle System Technology

٥°

7

26th ESAFORM

20 April 2023

Surrogates ...

Research Gap

State of the Art

...but they are typically task-specific "one-off" models

- $\rightarrow \qquad \text{each component requires re-sampling and re-training}$

Idea

26th ESAFORM

20 April 2023

Q,

- ML-techniques can learn complex system dynamics
 - $\rightarrow\,$ suitable for a generalised surrogate?

 g_1

State of the Art

Research hypotheses

ML and process simulation can be combined to extract knowledge from generic process samples and apply it to a new geometry

Hypothesis 2

Once trained, such a generalised ML-model speeds up an optimisation like a classical, geometry-specific surrogate

9

ML-algorithms for efficient process optimisation of variable geometries Clemens Zimmerling Agenda

Optimisation methodology

Summary and outlook

Process optimisation for variable geometries

Concept

ML-algorithms for efficient process optimisation of variable geometries Clemens Zimmerling

26th ESAFORM

20 April 2023

Process optimisation for variable geometries

Geometry information

Geometry encoding

- Close spatial relation between geometry and material strain [Zimmerling et al. 2019]
 - Well representable in greyscale-images
 - Usage of image processing ML-techniques (Convolutional neural networks, CNNs)
- Two-step function models μ [Zimmerling et al. 2020]
 - 1. μ_1 : Estimation of strain field γ
 - 2. μ_2 : Interpretation of the strain field and estimation of beneficial process parameters

Lightweight Engineering Institute of Vehicle System Technology

20 April 2023

Process optimisation for variable geometries

Visualisation example

Training of μ_1

 \rightarrow

13

ML-algorithms for efficient process optimisation of variable geometries **Clemens Zimmerling**

Lightweight Engineering Institute of Vehicle System Technology

Karlsruher Institut für Technolog

Agenda

Application example

Summary and outlook

14

ML-algorithms for efficient process optimisation of variable geometries **Clemens Zimmerling**

Karlsruher Institut für Technologie

Application example

Pressure-pad assisted fabric forming [Zimmerling et al. 2020, 2022b]

- FE fabric model [Poppe et al. 2018, 2019] on geometry catalogue of cuboids
- Process manipulation by pressure pads
- Goal: Smoothest possible draw-in \rightarrow textile curvature measures quality

 W_2

ML-algorithms for efficient process optimisation of variable geometries **Clemens Zimmerling**

Application example | Training results

Training progress with Reinforcement Learning [Zimmerling et al. 2020, 2022b]

- Sampling phase to gather observations
- Successful minimisation of curvature across...
 - 14 training geometries
 - 5 validation geometries (hidden)

26th ESAFORM ML-algorithms for efficient process optimisation of variable geometries 20 April 2023 **Clemens Zimmerling**

Application example | Training results

After training [Zimmerling et al. 2020, 2022b]

- Testing on new geometry variants
 - Doubly symmetric and mostly convex
 - No subset of the cuboids

Observation

- ML recommendations follow geometry variation
- Useful process recommendation (10% deviation from ,true' optimum)

Hypothesis 1

ML and process simulation can be combined to extract knowledge from generic process samples and apply it to a new geometry

26th ESAFORMML-algorithms for efficient process optimisation of variable geometries20 April 2023Clemens Zimmerling

17

Lightweight Engineering Institute of Vehicle System Technology

Application example | Training results

Training continuation [Zimmerling et al. 2020, 2022b]

 Process recommendations useful, but not strictly optimal

Thus

- Continuation of training on envisaged target geometry
 - Convergence towards optimum
 - Gradual reduction of textile curvature
 - → successful process optimisation for target geometry

Karlsruher Institut für Technologie

Application example | Training results

Optimisation approach comparison

- Direct (GA, no surrogate)
- SG (classical surrogate)
- ML (geometry-informed surrogate)

Observation

19

- SG and ML faster than direct
 - $\rightarrow\,$ Integration of prior knowledge
- ML more efficient than SG
 - $\rightarrow\,$ Geometry-specific sampling saved

Note on ML-pretraining

- Substantial prior effort required
- Decoupling of pre-training and deployment

Hypothesis 2

Once trained, such an generalised ML-model speeds up an optimisation like a classical, geometry-specific surrogate

Agenda

Summary and outlook

Summary

Efficient process optimisation

Initial situation

 Surrogate models speed up optimisation procedures, but prove unwieldy for variable geometries

Methodology

- ML-based optimisation for variable geometries
- Validation on new geometries and comparison to classical optimisers

Results

26th ESAFORM

20 April 2023

- Process dynamic can be learned from generic samples
 - Useful process recommendations after training
 - Recommendations converge to optimum

Prozessempfehlung

Geometrie

Zim

Lightweight Engineering Institute of Vehicle System Technology

Scherwinkel γ

26th ESAFORMML-algorithms for efficient process optimisation of variable geometries20 April 2023Clemens Zimmerling

Efficient process optimisation

Use case

22

Outlook

- More complex scenarios
 - Geometry, process parameters,...
 - Other manufacturing processes

Integration of prior knowledge [Raissi et al. 2019]

Integration of known physics into training (PINNs)
→ physically-consistent surrogate for optimisation ^[Würth 2022]

More advanced ML-techniques

Graph neural networks for further generalisability

GNN

CNN

Alphabetical order

	ML-algorithms for efficient process ontimisation of variable geometries
Raissi et al. 2019	M. Raissi, P. Perdikaris and G. E. Karniadakis: PINNs: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Comput. Physics, 378, 2019.
Poppe et al. 2019	C. Poppe, T. Rosenkranz, D. Dörr, L. Kärger: Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics, <i>Composite Part A</i> , 124, 2019.
Poppe et al. 2018	C. Poppe, D. Dörr, F. Henning, L. Kärger: Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics, Composites Part A, 114, 2018.
Pfrommer et al. 2018	J. Pfrommer, C. Zimmerling, J. Liu, F. Henning, L. Kärger, J. Beyerer: Optimisation of manufacturing process parameters using eep neural networks as surrogate models, <i>Procedia CIRP</i> , 72, 2018
Kärger et al. 2015	L. Kärger, A. Bernath, F. Fritz, S. Galkin, D. magagnato, A. Oeckerath, A. Schön, F. Henning: Development and validation of a CAE chain for unidirectional fibre reinforced composite components, <i>Composite Structures</i> , 132, 2015
ISO TR 581	ISO Technical Report 581. Weldability of metallic materials - General principles, 2005.
Guo et al. 2016	X. Guo,W. Li and F. Iorio: Convolutional neural networks for steady flow approximation. <i>Proceedings of the 22nd ACM</i> , 2016
Bonte et al. 2007	M.H.A. Bonte, A.H. van den Boogaard, J. Huétink: A Metamodel Based Optimisation Algorithm for Metal Forming Processes, Advanced Methods in Material Forming, 2007
Albrecht et al. 2019	F. Albrecht, C. Zimmerling, C. Poppe, L. Kärger, F. Henning: Development of a modular draping test bench for analysis of infiltrated woven fabrics in wet compression molding. Key Engineering Materials, 809, 2019

23

Institute of Vehicle System Technology

24

Alphabetical order

Sutton and Barto 2018	R.S. Sutton and A. Barto: Reinforcement learning - An introduction. <i>MIT Press,</i> Cambridge/USA and London/United Kingdom, 2 edition, 2018
Trippe 2019	D. Trippe: Untersuchung der Eignung tiefer neuronaler Netze zur zeiteffizienten Bewertung der Drapierbarkeit endlosfaserverstärkter Bauteile. Masterarbeit (Betreuer C. Zimmerling), Karlsruher Institut für Technologie - Institute für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Würth 2022	T. Würth: Solving parametric PDEs with physics-informed neural networks – An example from composite manufacturing. Masterarbeit (Betreuer C. Krauß und C. Zimmerling), Karlsruher Institut für Technologie - Institut für Fahrzeugsystemtechnik (KIT-FAST), Karlsruhe, 2019.
Zimmerling et al. 2019	C. Zimmerling, D. Trippe, B. Fengler, L. Kärger: An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks. AIP Conference Proceedings, 2113: Art. 020007, ESAFORM 2019, Vittoria-Gasteiz/Spain, 2019
Zimmerling et al. 2020	C. Zimmerling, C. Poppe, L. Kärger: Estimating optimum process parameters in textile draping of variable part geometries - A reinforcement learning approach. Procedia manufacturing, 47, ESAFORM 2020, Cottbus/Germany, 2020
Zimmerling et al. 2021	C. Zimmerling, P. Schindler, J. Seuffert, L. Kärger: Deep neural networks as surrogate models for time-efficient manufacturing process optimisation. PoPuPS of ULiège Library, DOI: 10.25518/esaform21.3882, ESAFORM 2021, Liège/Belgium, 2021
Zimmerling et al. 2022	C. Zimmerling, B. Fengler, L. Kärger: Formability Assessment of Variable Geometries using Machine Learning – Analysis of the Influence of the Database. Key Engineering Materials, 926, ESAFORM 2022, Braga/Portugal, 2022
Zimmerling et al. 2022b	C. Zimmerling, C. Poppe, O. Stein, L. Kärger: Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning, Materials and Design, 214, 2022
	Mu alageithms for officient process ontimisation of variable accountries

for the great support.

ML-algorithms for efficient process optimisation of variable geometries **Clemens Zimmerling**

Lightweight Engineering FAST Institute of Vehicle System Technology

