84 research outputs found

    Development and validation of the Infant Feeding Style Questionnaire

    Get PDF
    This study describes and validates the Infant Feeding Style Questionnaire (IFSQ), a self-report instrument designed to measure feeding beliefs and behaviors among mothers of infants and young children. Categorical confirmatory factor analysis was used to estimate latent factors for five feeding styles, laissez-faire, restrictive, pressuring, responsive and indulgent, and to validate that items hypothesized a priori as measures of each style yielded well-fitting models. Models were tested and iteratively modified to determine the best fitting model for each of 13 feeding style sub-constructs, using a sample of 154 low-income African-American mothers of infants aged 3-20 months in North Carolina. With minor changes, models were confirmed in an independent sample of 150 African-American first-time mothers, yielding a final instrument with 39 questions on maternal beliefs, 24 questions on behaviors and an additional 20 behavioral items pertaining to solid feeding for infants over 6 months of age. Internal reliability measures for the sub-constructs ranged from 0.75 to 0.95. Several sub-constructs, responsive to satiety cues, pressuring with cereal, indulgent pampering and indulgent soothing, were inversely related to infant weight-for-length z-score, providing initial support for the validity of this instrument for assessing maternal feeding beliefs and behaviors that may influence infant weight outcomes

    How Low Can You Go?: Widespread Challenges in Measuring Low Stream Discharge and a Path Forward

    Get PDF
    Low flows pose unique challenges for accurately quantifying streamflow. Current field methods are not optimized to measure these conditions, which in turn, limits research and management. In this essay, we argue that the lack of methods for measuring low streamflow is a fundamental challenge that must be addressed to ensure sustainable water management now and into the future, particularly as climate change shifts more streams to increasingly frequent low flows. We demonstrate the pervasive challenge of measuring low flows, present a decision support tool (DST) for navigating best practices in measuring low flows, and highlight important method developmental needs

    Power estimation for non-standardized multisite studies

    Get PDF
    AbstractA concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link
    corecore