38 research outputs found

    Elastic Strain Effects on Wave Scattering: Implications for Coda Wave Interferometry (CWI)

    Get PDF
    Coda Wave Interferometry (CWI) is a highly sensitive monitoring technique built on the sensitivity of elastic coda waves to small changes in a diffusive medium. However, a clear connection between the physical processes involved in the evolution of the medium and the time changes observed by CWI has not been clearly described yet. Here, we quantify the impact of elastic deformation on CWI measurements at laboratory scales. We compare experimental results from wave scattering measurements during a uniaxial compression test to those of a numerical approach based on the combination of two codes (SPECFEM2D and Code_Aster), which allows us to model wave propagation in complex diffusive media during its elastic deformation. In both approaches, the reversible time delays measured between waveforms increase with the elastic deformation of the sample. From the numerical modeling, we gain insight to the relative contributions of different physical effects on the CWI measurement: local density changes from volumetric strain, the deformation of scatterers, and acoustoelastic effects. Our results suggest that acoustoelastics effects related to nonlinear elasticity are dominant

    Recent seismicity on the Kerguelen islands

    Get PDF
    The Kerguelen archipelago, one of the largest oceanic archipelagos in the world, was built by an active hotspot interacting with a ridge between 110 and 40 million years ago; since then, the ridge has migrated over 1000~km away and the archipelago's volcanic activity has been steadily decreasing. Despite the lack of recent active tectonics and the quiescent volcanism of the Kerguelen archipelago, there have been several observations of seismic events of unknown origin in its vicinity. The only seismic instrument within 1000~km of the archipelago was installed on Kerguelen's main island in the 1980's. In this study we apply modern earthquake detection techniques to the continuous waveforms recorded by this seismometer over the past 20 years. We reveal that the Kerguelen archipelago islands hosts an abundant seismicity. This seismicity exhibits swarm-like characteristics in several clusters while at other locations the earthquakes appear more steady over time. We locate most events near the largest icecap of the main island. We speculate that the origin of the earthquakes can be linked to residual volcanic, magmatic, or hydrothermal activity at depth, all of which can be favored by flexural stress caused by the documented fast retreat of icecap. This seismicity may also indicate that the Kerguelen hotspot shows signs of unrest

    Rayleigh wave group velocities in North-West Iran: SOLA Backus-Gilbert vs. Fast Marching tomographic methods

    Get PDF
    In this study, we focus on Northwest Iran and exploit a dataset of Rayleigh-wave group-velocity measurements obtained from ambient noise cross-correlations and earthquakes. We build group-velocity maps using the recently developed SOLA Backus-Gilbert linear tomographic scheme as well as the more traditional Fast-marching Surface-wave Tomography method. The SOLA approach produces robust, unbiased local averages of group velocities with detailed information on their local resolution and uncertainty; however, it does not as yet allow ray-path updates in the inversion process. The Fast-marching method, on the other hand, does allow ray-path updates, although it does not provide information on the resolution and uncertainties of the resulting models (at least not without great computational cost) and may suffer from bias due to model regularisation. The core of this work consists in comparing these two tomographic methods, in particular how they perform in the case of strong vs. weak seismic-velocity contrasts and good vs. poor data coverage. We demonstrate that the only case in which the Fast-marching inversion outperforms the SOLA inversion is for strong anomaly contrasts in regions with good path coverage; in all other configurations, the SOLA inversion produces more coherent anomalies with fewer artefacts

    Ambient-noise tomography of the wider Vienna Basin region

    Get PDF
    We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∼20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∼15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others

    Non volcanic tremors : observations and modeling

    No full text
    Depuis maintenant une dizaine d'années, la vision du cycle sismique en zone de subduction a beaucoup évolué. Des découvertes récentes ont mis en évidence une grande diversité des régimes de glissement dans ces zones, avec notamment des glissements asismiques transitoires appelés « séismes lents » (SSE) et des vibrations de faibles amplitudes, persistantes dans le temps, appelées « trémors non volcaniques » (NVT). Ce travail a pour objectif l'étude des trémors non volcaniques afin de caractériser ces nouvelles manifestations des zones de faille. Nous avons abordé ce problème avec deux approches distinctes :1. Observer les trémors dans le milieu naturel afin de déterminer leurs caractéristiques. La zone étudiée correspond à la lacune sismique de Guerrero le long de la subduction mexicaine. Nous avons développé une méthode de détection et de localisation des NVT au Mexique grâce à des analyses d'antennes par formation de voie sur les corrélations. Cette méthode permet de mettre en évidence cer taines caractéristiques des NVT : une complexité des sources pour un épisode de trémors, une corrélation entre les activités de NVT et les pics de vitesse des glissements lents à plus long terme. Par ailleurs, l'étude de l'impact du séisme de Maule (2010, Chili, Mw 8.8) au Mexique montre qu'il a déclenché le second sous évènement du séisme lent de 2009-2010. Ce déclenchement d'un SSE s'ac- compagne de fortes activités de trémors, modulées par les ondes du séisme de Maule dans un premier temps, puis simplement associées au SSE.2. Modéliser les trémors expérimentalement et numériquement pour mieux com- prendre leur origine physique et leurs évolutions sur le long terme. Nous avons en particulier utilisé une expérience de frottement à faible vitesse qui indique une corrélation systématique entre les accélérations d'un glissement et l'émission de signaux qui ressemblent à des NVT. Une modélisation numérique de la zone de subduction mexicaine est également présentée et montre la possibilité de reproduire des trémors en considérant une transition d'affaiblissement critique associée à un processus de décrochage.The vision of the seismic cycle in subduction zones has considerably evolved over the last 10 years. New discoveries has pointed the diversity of slip behaviors in these zones with aseismic slow slip called « slow slip events » (SSE) and persistent low amplitudes vibrations called « non-volcanic tremors » (NVT). The goal of this thesis is to study the non-volcanic tremors in order to characterize these new manifestations of fault zones. We used two different approaches: 1. We first observed the non-volcanic tremors in the nature in order to characterize this phenomenon. The area of interest is the Guerrero seismic gap along the Mexican subduction zone. We develop a new detection and location method based on beamforming of correlations of seismic signals. This new method exhibits some characteristics of NVT: a complex source for a single tremor episode and a correlation between the NVT episodes and the long-term peak of movement velocity in southwards direction. Moreover, the study of the consequences of the Maule earthquake on the Mexican subduction zone showed that this earthquake triggered the 2009-2010 SSE in Guerrero. This triggering of slow slip is accompanied by strong seismic tremor actvity that are first modulated by the passing waves and then associated to the SSE. 2. We model numerically and experimentally the tremors in order to better understand their physical origin and their long-term evolution. We used a very slow friction experiment that indicates a systematic correlation between slip acceleration of a slider and emission of acoustic signals that are similar to NVT. A numerical modeling of the Mexican subduction zone is also presented and shows the possibility to reproduce NVT with a critical depinning transition

    Les trémors non volcaniques : observations et modélisations

    Get PDF
    The vision of the seismic cycle in subduction zones has considerably evolved over the last 10 years. New discoveries has pointed the diversity of slip behaviors in these zones with aseismic slow slip called « slow slip events » (SSE) and persistent low amplitudes vibrations called « non-volcanic tremors » (NVT). The goal of this thesis is to study the non-volcanic tremors in order to characterize these new manifestations of fault zones. We used two different approaches: 1. We first observed the non-volcanic tremors in the nature in order to characterize this phenomenon. The area of interest is the Guerrero seismic gap along the Mexican subduction zone. We develop a new detection and location method based on beamforming of correlations of seismic signals. This new method exhibits some characteristics of NVT: a complex source for a single tremor episode and a correlation between the NVT episodes and the long-term peak of movement velocity in southwards direction. Moreover, the study of the consequences of the Maule earthquake on the Mexican subduction zone showed that this earthquake triggered the 2009-2010 SSE in Guerrero. This triggering of slow slip is accompanied by strong seismic tremor actvity that are first modulated by the passing waves and then associated to the SSE. 2. We model numerically and experimentally the tremors in order to better understand their physical origin and their long-term evolution. We used a very slow friction experiment that indicates a systematic correlation between slip acceleration of a slider and emission of acoustic signals that are similar to NVT. A numerical modeling of the Mexican subduction zone is also presented and shows the possibility to reproduce NVT with a critical depinning transition.Depuis maintenant une dizaine d'années, la vision du cycle sismique en zone de subduction a beaucoup évolué. Des découvertes récentes ont mis en évidence une grande diversité des régimes de glissement dans ces zones, avec notamment des glissements asismiques transitoires appelés « séismes lents » (SSE) et des vibrations de faibles amplitudes, persistantes dans le temps, appelées « trémors non volcaniques » (NVT). Ce travail a pour objectif l'étude des trémors non volcaniques afin de caractériser ces nouvelles manifestations des zones de faille. Nous avons abordé ce problème avec deux approches distinctes :1. Observer les trémors dans le milieu naturel afin de déterminer leurs caractéristiques. La zone étudiée correspond à la lacune sismique de Guerrero le long de la subduction mexicaine. Nous avons développé une méthode de détection et de localisation des NVT au Mexique grâce à des analyses d'antennes par formation de voie sur les corrélations. Cette méthode permet de mettre en évidence cer taines caractéristiques des NVT : une complexité des sources pour un épisode de trémors, une corrélation entre les activités de NVT et les pics de vitesse des glissements lents à plus long terme. Par ailleurs, l'étude de l'impact du séisme de Maule (2010, Chili, Mw 8.8) au Mexique montre qu'il a déclenché le second sous évènement du séisme lent de 2009-2010. Ce déclenchement d'un SSE s'ac- compagne de fortes activités de trémors, modulées par les ondes du séisme de Maule dans un premier temps, puis simplement associées au SSE.2. Modéliser les trémors expérimentalement et numériquement pour mieux com- prendre leur origine physique et leurs évolutions sur le long terme. Nous avons en particulier utilisé une expérience de frottement à faible vitesse qui indique une corrélation systématique entre les accélérations d'un glissement et l'émission de signaux qui ressemblent à des NVT. Une modélisation numérique de la zone de subduction mexicaine est également présentée et montre la possibilité de reproduire des trémors en considérant une transition d'affaiblissement critique associée à un processus de décrochage

    Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes and ambient seismic noise

    No full text
    International audienceWest Africa could teach us much about the early tectonic history of Earth, but current seismic models of the regional crustal and lithospheric structure lack the resolution required to answer all but the most basic research questions. We have improved the resolution of group velocity maps of the West African Craton by complementing the uneven path distribution of earthquake-generated surface waves with surface waves reconstructed from ambient noise cross-correlations. Our joint dataset provides good spatial coverage of group velocity measurements from 20- to 100-s period, enabling us to reduce artefacts in our group velocity maps and improve their resolution. Our maps correlate well with regional geological features. At short periods, they highlight differences in crustal thickness, recent tectonic activity, and thick sediments. At long periods, we found lower velocities due to hot, thin lithosphere under the Pan-African mobile belt and faster velocities due to cold, thick lithosphere under the Man-Leo and Reguibat shields. Our higher resolution maps advance us a step towards revealing the detailed lithospheric structure and tectonic processes of West Africa
    corecore