633 research outputs found

    Phylogenetic Relationships among North American Popcorns and Their Evolutionary Links to Mexican and South American Popcorns

    Get PDF
    To determine genetic relationships among representative popcorns (Zea mays L.) of the New World, 56 maize populations from the USA and nine Latin American countries were characterized for 29 morphological traits, 18 isozyme loci, and 31 SSR loci. Cluster and principal component analyses were performed upon standardized morphological data and allelic frequencies from isozyme and SSR loci to elucidate relationships among populations within a geographical and historical context. Three groups of popcorn, with distinctive morphological characteristics and genetic profiles, were identified in the North American populations. The first group includes the North American Yellow Pearl Popcorns, which are currently the most important for U.S. commercial production. This group could be derived from introductions of the race Curagua from Chile into New England in the 19th Century. The second group includes the North American Pointed Rice Popcorns, which probably originated from the complex of traditional races of pointed popcorns from Latin America, such as Palomero Toluqueño, Confite Puntiagudo, Canguil, and Pisankalla, which diffused from the highlands of central Mexico into northern Mexico and then into southwestern USA. The third group includes the North American Early Popcorns, which show a marked influence of Northern Flint maize, from which they probably acquired the trait of early maturity. This third group also shows genetic influences of maize from northwestern Mexico and even from early European varieties of popcorn introduced late in the 19th Century. We propose that the three groups of North American popcorn identified in this study be recognized taxonomically as distinct races, and we provide characteristic traits as well as isozyme and SSR alleles to define the new races

    Pinyon and Juniper Encroachment into Sagebrush Ecosystems Impacts Distribution and Survival of Greater Sage-Grouse

    Get PDF
    AbstractIn sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread

    Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease.

    Get PDF
    Type 1 diabetes, a disease defined by absolute insulin deficiency, is considered a chronic autoimmune disorder resulting from the destruction of insulin-producing pancreatic β-cells. The incidence of childhood-onset type 1 diabetes has been increasing at a rate of 3%-5% per year globally. Despite the introduction of an impressive array of therapies aimed at improving disease management, no means for a practical "cure" exist. This said, hope remains high that any of a number of emerging technologies (e.g., continuous glucose monitoring, insulin pumps, smart algorithms), alongside advances in stem cell biology, cell encapsulation methodologies, and immunotherapy, will eventually impact the lives of those with recently diagnosed or established type 1 diabetes. However, efforts aimed at reversing insulin dependence do not address the obvious benefits of disease prevention. Hence, key "stretch goals" for type 1 diabetes research include identifying improved and increasingly practical means for diagnosing the disease at earlier stages in its natural history (i.e., early, presymptomatic diagnosis), undertaking such efforts in the population at large to optimally identify those with presymptomatic type 1 diabetes, and introducing safe and effective therapeutic options for prevention

    KELT-8b: A highly inflated transiting hot Jupiter and a new technique for extracting high-precision radial velocities from noisy spectra

    Get PDF
    We announce the discovery of a highly inflated transiting hot Jupiter discovered by the KELT-North survey. A global analysis including constraints from isochrones indicates that the V = 10.8 host star (HD 343246) is a mildly evolved, G dwarf with Teff=575455+54T_{\rm eff} = 5754_{-55}^{+54} K, logg=4.0780.054+0.049\log{g} = 4.078_{-0.054}^{+0.049}, [Fe/H]=0.272±0.038[Fe/H] = 0.272\pm0.038, an inferred mass M=1.2110.066+0.078M_{*}=1.211_{-0.066}^{+0.078} M_{\odot}, and radius R=1.670.12+0.14R_{*}=1.67_{-0.12}^{+0.14} R_{\odot}. The planetary companion has mass MP=0.8670.061+0.065M_P = 0.867_{-0.061}^{+0.065} MJM_{J}, radius RP=1.860.16+0.18R_P = 1.86_{-0.16}^{+0.18} RJR_{J}, surface gravity loggP=2.7930.075+0.072\log{g_{P}} = 2.793_{-0.075}^{+0.072}, and density ρP=0.1670.038+0.047\rho_P = 0.167_{-0.038}^{+0.047} g cm3^{-3}. The planet is on a roughly circular orbit with semimajor axis a=0.045710.00084+0.00096a = 0.04571_{-0.00084}^{+0.00096} AU and eccentricity e=0.0350.025+0.050e = 0.035_{-0.025}^{+0.050}. The best-fit linear ephemeris is T0=2456883.4803±0.0007T_0 = 2456883.4803 \pm 0.0007 BJDTDB_{\rm TDB} and P=3.24406±0.00016P = 3.24406 \pm 0.00016 days. This planet is one of the most inflated of all known transiting exoplanets, making it one of the few members of a class of extremely low density, highly-irradiated gas giants. The low stellar logg\log{g} and large implied radius are supported by stellar density constraints from follow-up light curves, plus an evolutionary and space motion analysis. We also develop a new technique to extract high precision radial velocities from noisy spectra that reduces the observing time needed to confirm transiting planet candidates. This planet boasts deep transits of a bright star, a large inferred atmospheric scale height, and a high equilibrium temperature of Teq=167555+61T_{eq}=1675^{+61}_{-55} K, assuming zero albedo and perfect heat redistribution, making it one of the best targets for future atmospheric characterization studies.Comment: Submitted to ApJ, feedback is welcom

    Predictors of vitamin D status and its association with parathyroid hormone in young New Zealand children.

    No full text
    BACKGROUND: Despite increased awareness of the adverse health effects of low vitamin D status, few studies have evaluated 25-hydroxyvitamin D [25(OH)D] status in young children. OBJECTIVES: We aimed to assess vitamin D status on the basis of 25(OH)D and its relation with parathyroid hormone (PTH) and to identify possible predictors of 25(OH)D status in young children living in a country with minimal vitamin D fortification. DESIGN: Serum 25(OH)D and PTH concentrations were measured in a cross-sectional sample of children aged 12-22 mo [n = 193 for 25(OH)D, n = 144 for PTH] living in Dunedin, New Zealand (latitude: 45 degrees S). Anthropometric, dietary, and sociodemographic data were collected. RESULTS: The majority of children sampled in the summer (94%; 47 of 50) had 25(OH)D >50 nmol/L; however, nearly 80% of children sampled in the winter (43 of 55) had serum concentrations 60-65 nmol/L, a plateau in PTH was evident. CONCLUSIONS: Seasonal variation in 25(OH)D concentration implies that postsummer vitamin D stores were insufficient to maintain status >50 nmol/L year-round. Examination of the predictors of 25(OH)D in our model shows few modifiable risk factors, and thus effective dietary strategies may be required if future research determines that children with 25(OH)D concentrations <50 nmol/L are at significant health risk. This trial was registered at www.actr.org.au as ACTRN12605000487617

    Synthesis and Characterization of Bidentate Isonitrile Iron Complexes

    Get PDF
    Divalent iron complexes trans-[FeBr2(BINC)2], [Cp*FeCl(BINC)] (Cp* = Me5C5) and [FeBr2(CNAr3NC)2] with chelat-ing bis(isonitrile) ligands BINC (bis(2-isocyanophenyl)phenylphosphonate) and CNAr3NC (2,2’’-diisocyano-3,5,3’’,5’’tetramethyl-1,1’:3’,1’’-terphenyl) have been prepared and characterized. Their subsequent reduction yields di- and trinuclear compounds [Fe3(BINC)6], [Cp*Fe(BINC)]2, [Fe(CNAr3NC)2]2 and [K(Et2O)]2[Fe(CNAr3NC)2]2. The molecular structures of all new species were determined by X-ray crystallography. The molecular structures are compared to related iron carbonyl complexes. The complexes were further characterized by NMR and IR spectroscopy, and the electrochemical properties of selected compounds were analyzed by UV-Vis-NIR spectroelectrochemistry

    Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG registries

    Get PDF
    Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of &lt; 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs). Materials and Methods Data abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia. Results Among 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival ≥ 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age &lt; 3 or &gt; 10 years (11% v 3% and 33% v 23%, respectively; P &lt; .001) and with longer symptom duration ( P &lt; .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials
    corecore