373 research outputs found

    Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard

    Get PDF
    © Author(s) 2014. This work is distributed under the Creative Commons Attribution 3.0 LicenseIn this study we investigated the impact of water uptake by aerosol particles in ambient atmosphere on their optical properties and their direct radiative effect (ADRE, W m-2) in the Arctic at Ny-Ålesund, Svalbard, during 2008. To achieve this, we combined three models, a hygroscopic growth model, a Mie model and a radiative transfer model, with an extensive set of observational data. We found that the seasonal variation of dry aerosol scattering coefficients showed minimum values during the summer season and the beginning of fall (July-August-September), when small particles (< 100 nm in diameter) dominate the aerosol number size distribution. The maximum scattering by dry particles was observed during the Arctic haze period (March-April-May) when the average size of the particles was larger. Considering the hygroscopic growth of aerosol particles in the ambient atmosphere had a significant impact on the aerosol scattering coefficients: the aerosol scattering coefficients were enhanced by on average a factor of 4.30 ± 2.26 (mean ± standard deviation), with lower values during the haze period (March-April-May) as compared to summer and fall. Hygroscopic growth of aerosol particles was found to cause 1.6 to 3.7 times more negative ADRE at the surface, with the smallest effect during the haze period (March-April-May) and the highest during late summer and beginning of fall (July-August-September).Peer reviewe

    A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve

    Get PDF
    The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves

    The Phylogeography of Rabies in Grenada, West Indies, and Implications for Control

    Get PDF
    In Grenada, West Indies, rabies is endemic, and is thought to be maintained in a wildlife host, the small Indian mongoose (Herpestes auropunctatus) with occasional spillover into other hosts. Therefore, the present study was undertaken to improve understanding of rabies epidemiology in Grenada and to inform rabies control policy. Mongooses were trapped island-wide between April 2011 and March 2013 and examined for the presence of Rabies virus (RABV) antigen using the direct fluorescent antibody test (dFAT) and PCR, and for serum neutralizing antibodies (SNA) using the fluorescent antibody virus neutralization test (FAVN). An additional cohort of brain samples from clinical rabies suspects submitted between April 2011 and March 2014 were also investigated for the presence of virus. Two of the 171 (1.7%) live-trapped mongooses were RABV positive by FAT and PCR, and 20 (11.7%) had SNAs. Rabies was diagnosed in 31 of the submitted animals with suspicious clinical signs: 16 mongooses, 12 dogs, 2 cats and 1 goat. Our investigation has revealed that rabies infection spread from the northeast to the southwest of Grenada within the study period. Phylogenetic analysis revealed that the viruses from Grenada formed a monophyletic clade within the cosmopolitan lineage with a common ancestor predicted to have occurred recently (6–23 years ago), and are distinct from those found in Cuba and Puerto Rico, where mongoose rabies is also endemic. These data suggest that it is likely that this specific strain of RABV was imported from European regions rather than the Americas. These data contribute essential information for any potential rabies control program in Grenada and demonstrate the importance of a sound evidence base for planning interventions

    Probing IMF using nanodust measurements from inside Saturn's magnetosphere

    Full text link
    We present a new concept of monitoring the interplanetary magnetic field (IMF) by using in situ measurements of nanodust stream particles in Saturn's magnetosphere. We show that the nanodust detection pattern obtained inside the magnetosphere resembles those observed in interplanetary space and is associated with the solar wind compression regions. Our dust dynamics model reproduces the observed nanodust dynamical properties as well as the detection pattern, suggesting that the ejected stream particles can reenter Saturn's magnetosphere at certain occasions due to the dynamical influence from the time‐varying IMF. This method provides information on the IMF direction and a rough estimation on the solar wind compression arrival time at Saturn. Such information can be useful for studies related to the solar wind‐magnetosphere interactions, especially when the solar wind parameters are not directly available. Key Points A new method to probe IMF with nanodust measurements inside the magnetosphere Under changing IMF, ejected nanoparticles can re‐enter Saturn‐s magnetosphere IMF direction and solar wind compression arrival time can be derivedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99078/1/grl50604.pd

    Measurement of the Electric and Magnetic Polarizabilities of the Proton

    Full text link
    The Compton scattering cross section on the proton has been measured at laboratory angles of 90^\circ and 135^\circ using tagged photons in the energy range 70--100 MeV and simultaneously using untagged photons in the range 100--148~MeV. With the aid of dispersion relations, these cross sections were used to extract the electric and magnetic polarizabilities, αˉ\bar{\alpha} and βˉ\bar{\beta} respectively, of the proton. We find αˉ+βˉ=(15.0±2.9±1.1±0.4)×104fm3,\bar{\alpha}+\bar{\beta} = ( 15.0 \pm 2.9 \pm 1.1 \pm 0.4 ) \times 10^{-4} \: {\rm fm}^3, in agreement with a model-independent dispersion sum rule, and αˉβˉ=(10.8±1.1±1.4±1.0)×104fm3,\bar{\alpha}-\bar{\beta} = ( 10.8 \pm 1.1 \pm 1.4 \pm 1.0 ) \times 10^{-4} \: {\rm fm}^3, where the errors shown are statistical, systematic, and model-dependent, respectively. A comparison with previous experiments is given and global values for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.

    Meson exchange and nucleon polarizabilities in the quark model

    Full text link
    Modifications to the nucleon electric polarizability induced by pion and sigma exchange in the q-q potentials are studied by means of sum rule techniques within a non-relativistic quark model. Contributions from meson exchange interactions are found to be small and in general reduce the quark core polarizability for a number of hybrid and one-boson-exchange q-q models. These results can be explained by the constraints that the baryonic spectrum impose on the short range behavior of the mesonic interactions.Comment: 11 pages, 1 figure added, expanded discussio

    Virtual Compton Scattering off the Nucleon in Chiral Perturbation Theory

    Get PDF
    We investigate the spin-independent part of the virtual Compton scattering (VCS) amplitude off the nucleon within the framework of chiral perturbation theory. We perform a consistent calculation to third order in external momenta according to Weinberg's power counting. With this calculation we can determine the second- and fourth-order structure-dependent coefficients of the general low-energy expansion of the spin-averaged VCS amplitude based on gauge invariance, crossing symmetry and the discrete symmetries. We discuss the kinematical regime to which our calculation can be applied and compare our expansion with the multipole expansion by Guichon, Liu and Thomas. We establish the connection of our calculation with the generalized polarizabilities of the nucleon where it is possible.Comment: 26 pages, 2 Postscript figures, RevTex using epsfi

    Revising the hygroscopicity of inorganic sea salt particles

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Sea spray is one of the largest natural aerosol sources and plays an important role in the Earth's radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the air, which affects the extent to which they interact with solar radiation. We demonstrate that the hygroscopic growth of inorganic sea salt is 8-15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic sea salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation interactions, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic sea salt particles in numerical models.P.Z. was partially financed by an Advanced Postdoc.Mobility fellowship of the Swiss National Science Foundation (grant no. P300P2_147776). M.E.S., C.L. and I.R. were financed by the Nordic Center of Excellence on Cryosphere-Atmosphere-Cloud-Climate-Interactions (NCoE CRAICC) and the Swedish Research Council (Vetenskapsradet). O.V. and A.V. were supported by the Academy of Finland Centre of Excellence (grant no. 272041) and The Doctoral School of the University of Eastern Finland. J.C.C. and M.G. received financial support from the European Research Commission via the ERC grant ERC-CoG 615922-BLACARAT. A.N. acknowledges support from a Georgia Power Scholar chair and a Cullen-Peck faculty fellowship. S.B. and M.M.-F. acknowledge funding by the Swiss National Science Foundation (grant no. 200020_146760/1). I. Tegen (TROPOS, Germany) is acknowledged for providing help with the sea spray source functions. We thank D. Eklöf and Z. Bacsik from the Department of Materials and Environmental Chemistry at Stockholm University for their assistance in the pycnometre and Fourier transform infrared spectrometer measurements. The ECHAM-HAMMOZ model is developed by a consortium composed of ETH Zurich, Max Planck Institut für Meteorologie, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich

    The tree species matters: Belowground carbon input and utilization in the myco-rhizosphere

    Get PDF
    © 2017 Elsevier Masson SAS Rhizodeposits act as major carbon (C) source for microbial communities and rhizosphere-driven effects on forest C cycling receive increasing attention for maintaining soil biodiversity and ecosystem functions. By in situ 13 CO 2 pulse labeling we investigated C input and microbial utilization of rhizodeposits by analyzing 13 C incorporation into phospholipid fatty acids (PLFA) of beech- (Fagus sylvatica) and ash-associated (Fraxinus excelsior) rhizomicrobial communities. Plant compartments and soil samples were analyzed to quantify the allocation of assimilates. For 1 m high trees, ash assimilated more of the applied 13 CO 2 (31%) than beech (21%), and ash allocated twice as much 13 C belowground until day 20. Approximately 0.01% of the applied 13 C was incorporated into total PLFAs, but incorporation varied significantly between microbial groups. Saprotrophic and ectomycorrhizal fungi under beech and ash, but also arbuscular mycorrhizal fungi and Gram negative bacteria under ash, incorporated most 13 C. PLFA allowed differentiation of C fluxes from tree roots into mycorrhiza: twice as much 13 C was incorporated into the fungal biomarker 18:2ω6,9 under beech than under ash. Within 5 days, 30% of the fungal PLFA-C was replaced by rhizodeposit-derived 13 C under beech but only 10% under ash. None of the other microbial groups reached such high C replacement, suggesting direct C allocation via ectomycorrhizal symbioses dominates the C flux under beech. Based on 13 CO 2 labeling and 13 C tracing in PLFA we conclude that ash allocated more C belowground and has faster microbial biomass turnover in the rhizosphere compared to beech
    corecore