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Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and 
the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even- 
skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila 
and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, 
Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca 
constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular 
underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for promi-
nent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, 
eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in  
invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, 
individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed 
in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an 
ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of 
mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows 
a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes 
at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot 
retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior 
and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the 
velum musculature and various retractor systems appear to be also common in bivalves.
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Introduction

Bilaterian animals have three germ layers, the ectoderm, 
the endoderm, and the mesoderm. The mesoderm origi-
nates during gastrulation and forms a variety of derivatives, 
including connective tissue and the musculature. Gene 

expression during mesoderm formation and/or myogenesis 
has been studied in most bilaterians such as acoelomorphs, 
deuterostomes such as chordates, hemichordates, and echi-
noderms, as well as in ecdysozoan and lophotrochozoan 
protostomes (e.g., brachiopods, ectoprocts, phoronids, and 
annelids; Candia & Wright, 1995; Furlong et al., 2001; 
Minguillón & Garcia-Fernàndez, 2002; Pocock et al., 2004; 
Lowe et al., 2006; Andrikou et al., 2013; Chiodin et al., 
2013; Andrikou & Arnone, 2015; Passamaneck et al., 2015; 
Erkenbrack, 2016; Kozin et al., 2016; Martín-Durán et al., 
2017; Vellutini et al., 2017; Andrikou & Hejnol, 2021). Nev-
ertheless, a large gap of knowledge exists for one of the most  
morphologically diverse lophotrochozoan phyla, Mollusca, 
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for which only few species have been investigated in some 
detail (e.g., the gastropod Crepidula fornicata and the bivalve 
Saccostrea kegaki; Kakoi et al., 2008; Perry et al., 2015).

Developmental genes with a widely conserved expres-
sion during bilaterian mesoderm formation are manifold and 
include Brachyury (Bra), caudal (cdx), dachshund (dachs), 
even-skipped (eve), eyes absent (eya), forkhead A (foxA), 
forkhead C (foxC), forkhead D (foxD), forkhead F (foxF), 
gata4/5/6, myocyte enhancer factor-2 (mef2), Mox, myosin II  
heavy chain (mhc), myoblast determination protein 1 (myoD), 
neurokinin 1 (nk1), paraxis, sine oculis (six1/2), snail, tropo-
myosin (tm), twist (twi), and vasa (vas) (Andrikou & Hejnol, 
2021; Martín-Durán et al., 2017; Passamaneck et al., 2015; 
Sebé-Pedrós & Ruiz-Trillo, 2017; Zhang & Bernstein, 2001). 
The homeobox gene Mox (a homolog of Meox, Gax, and 
buttonless) appears to have an additional role in myogen-
esis in some lophotrochozoans and chordates (Kozin et al., 
2016; Passamaneck et al., 2015; Satou & Imai, 2015). Eve 
(a homolog of Evx, Xhox3, and vab-7) is closely related 
to Mox and acts as a pair-rule gene during arthropod seg-
mentation (Copf et al., 2003; Damen et al., 2000; Janssen  
et al., 2011; Patel et al., 1994). It is also involved in meso-
derm development and/or myogenesis in cephalochordates, 
vertebrates, and ecdysozoans, as well as in vertebrate limb 
formation (Ruiz et al., 1989; Patel et al., 1992; Ahringer, 
1996; Hérault et al., 1996; Sordino et al., 1996; Ferrier 
et al., 2001; Fujioka et al., 2005). Bra is expressed in the 
mesoderm of a number of protostomes and deuterostomes 
including annelids, brachiopods, priapulids, and arthropods 
(Kozin et al., 2016; Kusch & Reuter, 1999; Martín-Durán 
et al., 2017; Peter & Davidson, 2011; Peterson et al., 1999; 
Sebé-Pedrós & Ruiz-Trillo, 2017). For mollusks, no meso-
dermal expression of Bra was found in the gastropod Haliotis 
asinina, whereas in another marine snail, Patella vulgata, 
Bra is transiently expressed in the 4d cell that gives rise to 
the future endomesoderm (Koop et al., 2007; Lartillot et al., 
2002). In the gastropod Crepidula fornicata, Bra is involved 
in mesoderm formation, while in the bivalves Crassostrea 
gigas and Saccostrea kegaki, the data are somewhat inconclu-
sive as to whether or not Bra is expressed during mesoderm 
formation (Kin et al., 2009; Perry et al., 2015; Tan et al., 
2017). During metazoan myogenesis, a number of genes and 
their respective proteins are commonly expressed, includ-
ing those of the myosin family (Burgess, 2005; Thompson 
& Langford, 2002). Of these, myosin II heavy chain (mhc) 
appears to have a particularly conserved role in muscle for-
mation and is consistently expressed from the earliest stages 
of myogenesis onwards in a number of phyla (Kobayashi 
et al., 1998; Zhang & Bernstein, 2001; Renfer et al., 2010;  
Andrikou et al., 2013).

Although larval myoanatomy has been described in  
several invertebrate taxa including mollusks, very few 
details are available on the ontogenetic sequence that  

gives rise to the highly intricate musculature of larval and 
adult bivalves, the second largest class-level molluscan  
taxon after the gastropods (Audino et al., 2015; Li et al., 
2019; Sun et al., 2019; Wurzinger-Mayer et al., 2014). 
These studies showed that bivalve larvae typically exhibit 
a velum muscle ring as well as various retractor systems 
that degenerate prior to or at metamorphosis. The muscles  
of the pallial line, the mantle retractors, the adduc-
tor system, as well as the foot retractors together with  
the plexus-like foot  musculature, are common fea-
tures of adult bivalves that develop in the larva and are 
retained after metamorphosis (Audino et al., 2015; Cragg, 
2016; Li et al., 2019; Sun et al., 2020; Wurzinger-Mayer  
et al., 2014).

The invasive quagga mussel Dreissena rostriformis 
(Deshayes, 1838) shows an indirect lifecycle with a tro-
chophore and a subsequent veliger larva, and is an emerg-
ing model system in evolutionary developmental biology 
(Calcino et al., 2019; Salamanca-Díaz et al., 2021). In 
order to assess whether common regulators of bilaterian 
mesoderm and muscle formation are also involved in 
bivalve ontogeny, we investigated the expression of Brach-
yury, even-skipped, Mox, and myosin II heavy chain during 
D. rostriformis development. In addition, we provide a 
detailed account of myogenesis in this model bivalve in 
order to contribute to the reconstruction of the myoana-
tomical ground pattern of bivalve larvae.

Materials and methods

Animal collection, spawning, and fixation

Adult quagga mussels were collected in the Danube River 
in Vienna, Austria (Georg-Danzer-Steg, 48°14ʹ45.7ʺN 
16°23ʹ38.4ʺE), in May 2018. Mussels were kept in a 45 
L aquarium in an incubator at 18 °C in Danube water with 
a weekly water change. Prior to spawning, adult mussels 
were cleaned with a brush under running tap water. The 
specimens were washed in a 100 mL beaker with 2 µm 
filtered Danube water (FDW) containing 0.1% sodium 
hypochlorite (#09,951,780, DanKlorix, Hamburg, Ger-
many) for 5 min. To induce spawning, the mussels were 
placed in a fresh 100 mL beaker with FDW containing 
 10−3 M serotonin hydrochloride (#H9523, Sigma-Aldrich, 
St. Louis, MO, USA) for 20 min at room temperature 
(RT). After gamete release, the eggs of each female were 
mixed with two to three drops of concentrated sperm and 
transferred to a 200 mL container with fresh FDW and 
incubated for 15 min. This was followed by three washes 
in FDW to remove excess sperm. When the animals had 
reached the trochophore stage, the larvae of each female 
were transferred to a fresh container with 2 L FDW with 
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aeration and a magnetic stirrer and were kept at 18 °C. 
The FDW was exchanged every 2 days, and when the 
veliger stage was reached, the larvae were additionally 
fed one to two drops of an Isochrysis concentrate after 
the water change (Plankton-Welt, Hamburg, Germany).

Prior to fixation, crystalline cocaine was added 
to veliger larvae at a final concentration of 30 µg/mL 
(#609,020,011, Gatt-Koller, Absam, Austria) to avoid 
retraction into the shell. Developmental stages (gastrula, 
trochophore larva, early D-shaped veliger larva, late 
veliger larva) were fixed in 4% ice-cold paraformaldehyde 
(PFA) (#158,127, Sigma-Aldrich) in 0.1 M phosphate 
buffer saline (PBS) for 1 h. For in situ hybridization, sam-
ples were washed 2 × 10 min in 100% methanol and stored 
at − 20 °C. For immunofluorescence and actin staining, 
larvae were washed 3 × 10 min in PBS containing 0.1% 
 NaN3 (#71,289, Sigma-Aldrich) and stored at 4 °C.

Fluorescence staining

Dreissena rostriformis samples were washed 3 × 10 min 
in PBS, followed by decalcification for 1 h in 50 mM 
EGTA (#E3889, Sigma-Aldrich) in PBT (1 × PBS, 0.1% 
Tween 20; #9127.1, Carl Roth, Karlsruhe, Germany) 
and 2 × 10 min washes in PBT at RT. Unspecific binding 
sites were blocked for 1 h in PBT with 3% normal swine 
serum (#014–000-121, Jackson ImmunoResearch, West 
Grove, PA, USA). Subsequently, samples were incubated 
in the primary antibodies (dilution 1:900, anti-acetylated 
α-tubulin, #T6793, Sigma-Aldrich) in the block solution 
overnight at RT. All specimens were washed 5 × 15 min 
in PBT and incubated in secondary antibodies (dilu-
tion 1:900, goat anti-mouse, Alexa Fluor 633, #A21050, 
Invitrogen, Carlsbad, CA, USA) with DAPI (dilution 
1:400, 4ʹ,6-diamidino-2-phenylindole, #D1306, Invitro-
gen) added to visualize cell nuclei and Alexa Fluor 488 
phalloidin (dilution 1:40, #A12379, Invitrogen) for actin 
labelling in PBT for 24 h at 4 °C in the dark. All samples 
were washed 5 × 15 min in PBT, followed by two washing 
steps in PBS for 10 min each. Stained specimens were 
mounted on glass slides with Fluoromount-G (#0100–01, 
SouthernBiotech, Birmingham, AL, USA). The samples 
were stored at 4 °C in the dark for a few days prior to the 
analyses. Samples were analysed with a Leica SP5 II con-
focal laser scanning microscope with the software LAS 
AF (v. 2.6.3.8173) (both Leica Microsystems, Wetzlar, 
Germany). ImageJ2 (Rasband, W.S., ImageJ, US National 
Institutes of Health, Bethesda, MD, USA, https:// imagej. 
nih. gov/ ij/, 1997–2018) and Imaris × 64 (v. 7.3.1) (Bit-
plane, Zurich, Switzerland) were used to analyse the 
image stacks, and Inkscape (v. 0.92.4; https:// inksc ape. 
org/) was used to create the schematic drawings.

Bioinformatic analysis

Most candidate orthologs of the genes of interest (myosin 
II heavy chain, Mox, even-skipped, and Brachyury) and 
corresponding outgroups were retrieved from the NCBI nr 
database (https:// www. ncbi. nlm. nih. gov) and confirmed 
with reciprocal blast searches (Supplemental Tables 1, 2, 
and 3). Dreissena rostriformis sequences were subsequently 
obtained by BLASTp (v. 2.8.1 +) against the translated 
transcriptome using these candidate sequences as queries 
(Calcino et al., 2019). Additionally, a few orthologs were 
downloaded from the Ensembl Metazoa database (Sup-
plemental Tables 1 and 3). Orthologs containing either the 
myosin head domain or the T-box domain from the bivalve 
Crassostrea gigas and the cnidarian Nematostella vecten-
sis were obtained by using hmmscan (Eddy, 1995) with 
the corresponding PFam (v. 32.0) hmm files (PF00063.21, 
PF00907.22) against the respective Ensembl genomes 
(Howe et al., 2020; Hinxton, UK, https:// metaz oa. ensem bl. 
org/ index. html). All orthologs of the genes of interest of 
Acanthochitona fascicularis were identified by blast hits 
against the transcriptome (De Oliveira et al., 2016; here 
assigned to A. crinita) (https:// zoolo gy. univie. ac. at/ resea rch/ 
 open- data/) using hmmscan (Eddy, 1995).

For the myosin II heavy chain phylogeny, myosin families 
that are commonly known from metazoans were included 
(Thompson & Langford, 2002). All selected myosin fami-
lies contain a myosin head domain and because myosin I is 
considered to be the earliest branching family, it was used as  
the outgroup for the phylogeny (Foth et al., 2006). For the 
even-skipped and Mox phylogenies, several Hox gene fami-
lies were used as outgroup (Minguillón & Garcia-Fernàndez, 
2003; Ryan et al., 2007). For the Brachyury phylogeny, all 
metazoan-specific T-box families were included. Brachyury 
is an early branching family of T-box proteins and so was set 
as an outgroup to the remaining T-box families (Sebé-Pedrós 
& Ruiz-Trillo, 2017; Sebé-Pedrós et al., 2013).

Multiple sequence alignments were performed using 
MAFFT (v. 7.427) (Katoh et al., 2002), trimming was per-
formed with BMGE (v. 1.12) (Criscuolo & Gribaldo, 2010), 
visualisation was performed with AliView (v. 1.0.0.0) 
(Larsson, 2014), and editing was performed with Jalview (v. 
2.11.0) (Waterhouse et al., 2009). Appropriate amino acid 
substitution models were determined using ProtTest (v. 2.1) 
(Abascal et al., 2005). These were LG (Le & Gascuel, 2008) 
for Brachyury and myosin II heavy chain and JTT (Jones 
et al., 1992) for even-skipped and Mox. The phylogenetic 
(maximum likelihood) trees were computed using PHYML 
(v. 3.1) (Guindon & Gascuel, 2003) with a bootstrap value of 
100. Visualisation of phylogenetic trees was performed with 
FigTree (v. 1.4.4) (http:// tree. bio. ed. ac. uk/ softw are/ figtr ee/). 
For in situ hybridization probe production, specific primers 
for each gene under investigation were designed manually 
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(Supplemental Table 4) and synthesised by Microsynth 
Austria GmbH (Vienna, Austria). Reading frames and ori-
entation of the transcriptomic templates were verified with 
the ExPASy translate tool (Artimo et  al., 2012; https:// 
web. expasy. org/ trans late/) and melting temperatures of the 
designed primers were checked with the Promega Oligo Cal-
culator tool (Rychlik & Rhoads, 1989; https:// at. prome ga. 
com/ resou rces/ tools/ bioma th/ tm- calcu lator/; 500 nM primer 
concentration, 5 × green or colourless Go Taq Reaction 
Buffer). For the self-complementary check, the Northwestern 
biotool OligoCalc tool (Kibbe, 2007; http:// bioto ols. nubic. 
north weste rn. edu/ Oligo Calc. html) was used. The primers 
were diluted to yield a working concentration of 10 µM and 
stored at − 20 °C. The nucleotide sequences and insert length 
of each primer pair are listed in Supplemental Table 4. Rela-
tive gene expression values (tpm values) were retrieved for 
all four genes of interest using stage-specific transcriptomes 
of D. rostriformis (Calcino et al., 2019).

RNA extraction, gene cloning, and probe synthesis

Different developmental stages (1, 2, 4, 6, 8, 12, 15, 18, 21, 
24, 28, 48, 70 h post fertilisation; hpf) were transferred to 
RNAlater (#76,106, Qiagen, Venlo, Netherlands) and stored 
at 4 °C. For total RNA extraction from pooled stages, the 
RNeasy Mini Kit (#74,104, Qiagen) with the QIAshredder 
homogeniser (#79,654, Qiagen) was used according to the 
manufacturer’s instructions. RNA samples were diluted 1:10 
with DEPC (diethylpyrocarbonate)–treated water, quantified 
by a spectrophotometer (Nanodrop 2000c, Thermo Fisher 
Scientific), and stored at −80 °C. For cDNA synthesis, total 
RNA was denatured for 15 min at 65 °C and placed on ice. 
Subsequently, the 1st Strand cDNA Synthesis Kit for RT-
PCR (#11 483 188 001, Roche, Basel, Switzerland) was used 
with Oligo-p(dt)15 primers. The obtained cDNA was diluted 
1:5 with DEPC-treated water and stored at −20 °C.

PCRs (cDNA-, plasmid-, colony-PCR) were per-
formed using Go Taq Flexi DNA Polymerase (0.025 U/µl, 
#M780B, Promega, Madison, WI, USA), 1 × Go Taq Flexi 
Buffer (#M890A, Promega), PCR nucleotide mix (0.8 mM, 
#C1145, Promega), 1.25 mM  MgCl2 (#A351H, Promega), 
and nuclease-free water (#R0581, Thermo Fisher Scientific, 
Waltham, MA, USA). To amplify Brachyury, Mox, even-
skipped, and myosin II heavy chain, gene-specific prim-
ers (Supplemental Table 4) and cDNA were added to the 
PCR mixture. The PCR products were checked on a 1% 
agarose gel (#2267.4, Carl Roth) in TAE buffer (#CL86.1, 
Carl Roth). Bands corresponding to the expected nucleotide 
sequence length were excised and the DNA was extracted 
using the QIAquick Gel Extraction Kit (#28,706, Qiagen). 
The extracted DNA (insert) was stored at −20 °C. Liga-
tion of the insert into a plasmid and transformation of the 
plasmid into E. coli JM109 Competent Cells were done 

using the pGEM-T Easy Vector System II (#A1380, Pro-
mega) according to the manufacturer’s instructions. White-
blue screening of transformed bacteria was performed on 
LB agar plates (35 mg/mL, #965.1, Carl Roth) with 0.1% 
ampicillin (#A9518, Sigma-Aldrich). Successful trans-
formation of the desired insert was confirmed by colony 
PCR, using M13 primers (10 µM, Microsynth, Balgach, 
Switzerland). Transformed bacteria were grown in 5 mL 
LB medium (#X964.1, Carl Roth) containing ampicillin 
(100 µg/mL, #A9518, Sigma-Aldrich) overnight at 37 °C 
with agitation (180 RPM). Plasmids were purified using the 
QIAprep Spin Miniprep Kit (#27,106, Qiagen), quantified 
(Nanodrop 2000c, Thermo Fisher Scientific), and sequenced 
(Microsynth, Vienna, Austria).

Inserts corresponding to genes of interest were amplified 
through plasmid PCR using M13 primers. PCR products 
were checked by gel electrophoresis and stored at 4 °C. For 
the synthesis of sense and anti-sense riboprobes, PCR prod-
ucts (100–200 ng) were incubated with RNase-free water 
(#R0581, Thermo Fisher Scientific), 1 × transcription buffer 
(#11,465,384,001, Roche), 10  µM dithiothreitol (DTT, 
#D9779, Sigma-Aldrich), 1 × DIG RNA Labelling Mix 
(#11,277,073,910, Roche), 0.1 U Protector RNase Inhibi-
tor (#03,335,402,001, Roche), 50 U SP6 RNA polymerase 
(#10,810,274,001, Roche), or 50 U T7 RNA polymerase 
(#10,881,767,001, Roche) in a thermocycler (37 °C, lid 
60 °C) for 2 h. Afterwards, 1 µL DNase I (recombinant, 
RNase-free, #04,716,728,001, Roche) was added and sam-
ples were incubated for another 15 min at 37 °C to remove 
template DNA. DIG-Probes were purified via ProbeQuant™ 
G-50 Micro Columns (#GE28-9034–08, GE Healthcare, 
Chicago, IL, USA).

Riboprobes were precipitated by adding 5 µL 4 M LiCl 
(#L7026, Sigma-Aldrich) and 120 µL 100% EtOH (#20,821, 
VWR Chemicals, Radnor, PA, USA) and by incubating 
overnight at −20 °C. Next, riboprobes were centrifuged at 
14,000 RPM for 15 min at 4 °C and the obtained pellets were 
washed twice with 70% EtOH. Pellets were dried for 15 min 
at RT and dissolved in 20 µL RNase-free water (#R0581, 
Thermo Fisher Scientific). All RNA probes were quantified 
by a spectrophotometer, checked by gel electrophoresis, and 
stored at −80 °C.

Whole mount in situ hybridization (WMISH)

Prior to WMISH, the developmental transcript abundances 
of each target gene were checked using quantitative gene 
expression data (Supplemental Table 5) (Calcino et al., 
2019). This was done in order to assess the relative expres-
sion levels of putative genes of interest and helped in choos-
ing promising candidate genes as well as key developmen-
tal stages for in situ hybridization experiments. Full-length 
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sequences of the riboprobes used for WMISH experiments 
are provided in Supplemental Table 6.

Dreissena rostriformis samples were rehydrated step-
wise from 100% methanol to 0.1 M PBS (#1058.1, Carl 
Roth). All samples were decalcified for 1 h in PPE (4% PFA 
(#158,127, Sigma-Aldrich), 0.1 M PBS, 50 mM EGTA 
pH 8 (#E3889, Sigma-Aldrich)) and washed 3 × 5 min in 
PBT. Subsequently, the larvae were incubated in 30 µg/mL 
proteinase-K (#03,115,879,001, Roche) in PBS for 10 min 
at 37 °C. Specimens were washed 3 × 5 min in PBT, post-
fixed in 4% PFA in PBS for 45 min, and washed again 
3 × 5 min in PBT. Subsequently, the larvae were stepped 
into 100% hybridization buffer (50% formamide (#47,671, 
Sigma-Aldrich), 5 × SSC (#10,541, Carl Roth), 50–100 µg/
mL heparin (#H3149, Sigma-Aldrich), 5 mM EDTA pH 8 
(#20–158, Sigma-Aldrich), 1 × Denhardt’s (#D2532, Sigma-
Aldrich), 100 µg/mL yeast tRNA (#R6750, Sigma-Aldrich), 
0.1% Tween 20 (#9127.1, Carl Roth), 5% dextransulfat 
(#D8906, Sigma-Aldrich)). Pre-hybridization was carried 
out overnight at a gene-specific temperature (58.5 °C for 
myosin II heavy chain and 55 °C for Mox, even-skipped, 
and Brachyury). Each sense probe (negative control) and 
anti-sense probe was diluted at a concentration of 2 ng/µL in 
hybridization buffer and denatured for 10 min at 85 °C. After 
adding a riboprobe to the specimens, they were allowed  
to hybridize for 48–60 h at the abovementioned gene-specific  
temperatures.

The samples were washed 3 × 20 min in 4 × wash (50% 
formamide (#47,671, Sigma-Aldrich), 4 × SSC (#10,541, 
Carl Roth), 0.1% Tween 20 (#9127.1, Carl Roth)), fol-
lowed by 2 × 20 min washes in 2 × wash (with 2 × instead 
of 4 × SSC) and another 2 × 15 min washes in 1 × wash 
(with 1 × SSC). Specimens were allowed to  cool down 
to RT and washed 3 × 15 min in 1 × SSC (#10,541, Carl 
Roth) containing 0.1% Tween 20 (#9127.1, Carl Roth). 
Subsequently, all samples were stepped into 0.1 M MAB 
(100 mM maleic acid (#K304.1, Carl Roth), 150 mM NaCl 
(#6781.3, Carl Roth), 0.1% Tween 20 (#9127.1, Carl Roth)). 
Specimens were blocked for 3 h in blocking solution (2% 
blocking reagent (#11,096,176,001, Roche), 0.1 M MAB) 
at RT, followed by incubation in Anti-Digoxigenin-AP 
Fab fragments (#11,093,274,910, Roche) diluted 1:5000 
in blocking solution overnight at 4 °C. Next, the samples 
were washed 3 × 20 min and 3 × 10 min in PBT. Prior to 
staining, the larvae were washed 2 × 5 min in AP buffer 
(1 × alkaline phosphatase, 1 M NaCl (#6781.3, Carl Roth), 
200 mM Tris pH 9 (#4855.1, Carl Roth), 0.1% Tween 20 
(#9127.1, Carl Roth)). For highly expressed genes (e.g., 
myosin II heavy chain), specimens were stained in colour 
reaction buffer (1 × AP buffer, 5 µL/mL NBT (nitroblue 
tetrazolium chloride, #11,383,213,001, Roche), 3.75 µL/
mL BCIP (5-bromo-cloro-3-indolyl-phosphate, 4-toluidine 
salt (#11,383,221,001, Roche)) at 37 °C for 2–3 h. For lowly 

expressed genes, 7.5% polyvinyl alcohol (PVA) (#P1763, 
Sigma-Aldrich) was added to the colour reaction buffer and 
specimens were incubated at 37 °C for 4–13.5 h. In order to 
stop the reaction, the larvae were washed 2 × 5 min in PBT 
and post-fixed in 4% PFA for 1 h at 4 °C. Subsequently, the 
specimens were washed 3 × 5 min in PBT and 3 × 10 min 
in PBS at RT. All washing steps were done on a shaker at 
130 RPM. Stained larvae were stored at 4 °C and the PBS 
was changed once a week. For the subsequent analyses, the 
samples were mounted on glass slides in 100% glycerol 
(#G5516, Sigma-Aldrich) and imaged using an Olympus 
BX53 light microscope equipped with an Olympus DP73 
camera and the software cellSens Standard (v. 1.11) (Olym-
pus Corporation, Shinjuku, Tokyo, Japan). Schematic draw-
ings were created with Inkscape (v. 0.92.4).

Results

Phylogenetic analyses of genes of interest

All annotated genes of interest are summarized in Supple-
mental Table 7. For the myosin II heavy chain family, four 
candidates (Dro-mhc_c1, c2, c3, c4) were found in Dreis-
sena rostriformis, which contain a specific glycine insertion 
(G) (Richards & Cavalier-Smith, 2005) at position 534 (Sup-
plemental Fig. 1). The first three candidates (Dro-mhc_c1-
c3) include a complete myosin N, myosin head, and myosin 
tail 1 domain. The fourth candidate (Dro-mhc_c4) contains 
a fragmented myosin head domain (Supplemental Table 7). 
Nine further candidates (two copies of myosin I, myosin III, 
myosin V, myosin VI, myosin VII, myosin IX, myosin XV, 
and myosin XVIII) with partially fragmented myosin head 
domains were found in D. rostriformis and nest within the 
corresponding myosin family (Supplemental Fig. 1a and 
Supplemental Table 7).

A phylogenetic tree was constructed for the homeobox 
domain–containing even-skipped and Mox genes (Supple-
mental Fig. 2). A single D. rostriformis even-skipped (Dro-
eve) ortholog was identified, which includes a proposed 
characteristic tyrosine (Y) at position 48 at the beginning 
of the homeobox domain (Supplemental Fig. 2a, b). Two D. 
rostriformis Mox (Dro-Mox_c1 and Dro-Mox_c2) orthologs 
were found, which contain a putatively specific glutamic 
acid (E) insertion at position 48 at the beginning of the 
homeobox domain (Supplemental Fig. 2a, c). The third Mox 
candidate nests within the Hox4 family and so is likely not 
a true Mox gene (Supplemental Fig. 2a).

A single D. rostriformis Brachyury (Dro-Bra) ortholog 
nests within the Brachyury family, which includes a specific 
lysine (K) (Conlon et al., 2001; Sebé-Pedrós et al., 2013) at 
position 121 (Supplemental Fig. 3). Six further candidates 
(Eomes, Tbx2, Tbx3, Tbx15, twice Tbx20) with a T-box 
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domain were found in D. rostriformis and nest within the 
corresponding family (Supplemental Fig. 3 and Supplemen-
tal Table 7).

Orientation and characteristics of developmental 
stages

At 18 °C, a free-swimming ciliated gastrula forms by 18 h 
post fertilisation (hpf). The developing shell field is char-
acterised by a deep invagination on the dorsal side that is 
surrounded by large ectodermal cells, while the blastopore 
marks the ventral side (Figs. 1 and 2). By about 24 hpf, the 
early trochophore larva has developed. Evagination of the 
shell field commences and is completed by approximately 
30 hpf. A ciliated two-rowed prototroch is distinct, together 
with an apical tuft and a posterior telotroch (Figs. 1, 2, 3, 
and 4). Between 30 and 40 hpf, an early (D-shaped) veliger 
larva has developed. It is characterised by two lateral valves 
that form the embryonic shell (protoconch I: often referred 
to prodissoconch in bivalves; see Wanninger & Wollesen, 
2015) and by a ciliated velum that forms from the prototroch. 

In addition, Dreissena veliger larvae also exhibit a pre-anal 
tuft on the ventral side, a telotroch on the ventro-posterior 
side, and a functional digestive tract. After 4–5 days, the 
D-shape of the veliger larva changes and the umbo begins 
to form (Fig. 5). The oldest veliger larvae were over 1 month 
old.

Developmental expression of Brachyury 
and even‑skipped

Dro-Bra shows high relative expression with respect to other 
genes during early stages (< 18 hpf), with a considerable 
relative decrease in the gastrula stage (18–23 hpf) (Supple-
mental Table 5). Relative expression values remain low in 
the trochophore (23–30 hpf) and veliger stage (> 30 hpf) 
(Supplemental Fig. 4a and Supplemental Table 5). Dro-Bra 
expression is first detected in the developing mesoderm in 
the ventral region of the gastrula (18 hpf) (Fig. 1a, b). In 
the trochophore larva (30 hpf), Dro-Bra is expressed in the 
endoderm on either side along the invagination of the devel-
oping digestive tract (Fig. 1c, d). In addition, expression of 

Fig. 1  Expression of Brachy-
ury (Dro-Bra) in Dreissena 
rostriformis gastrula and 
trochophore stages. Anterior is 
up. Black arrowheads indicate 
the blastopore/stomodaeum, sf 
marks the shell field,  dot-
ted line marks the region of 
the prototroch (pt). Scale bar 
equals 20 µm. a Lateral view 
of Dro-Bra in the ventral 
mesoderm. b Ventral view of 
mesodermal Dro-Bra expres-
sion. c Dro-Bra is expressed in 
the ventro-posterior mesoderm 
and in the developing foregut. 
d Mesodermal and endodermal 
expression of Dro-Bra, ventral 
view. The left and right lobes 
belong to the prototroch (pt). A, 
anterior; D, dorsal; P, posterior; 
V, ventral



A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle…

1 3

Fig. 2  Expression of even-
skipped (Dro-eve) during early 
development in Dreissena 
rostriformis. Anterior is up. 
Black arrowheads indicate 
the blastopore/stomodaeum, 
dotted line marks the region 
of the prototroch (pt), and sf 
marks the shell field. Scale bar 
equals 20 µm. a Dro-eve is first 
expressed in the ventral meso-
derm and in ectodermal cells 
of the shell field. b Dro-eve 
expression in the ventral meso-
derm ventro-posteriorly of the 
shell field. c Ectodermal expres-
sion of Dro-eve in the shell 
field. d Dro-eve expression in 
the ventro-posterior mesoderm 
and in the shell field of the tro-
chophore larva. e Mesodermal 
expression of Dro-eve in ventral 
view. A, anterior; D, dorsal; P, 
posterior; V, ventral

Fig. 3  Expression of myosin II 
heavy chain (Dro-mhc_c1) and 
immunofluorescence stain-
ing in Dreissena rostriformis 
trochophore larvae. Anterior 
is up. Arrowheads indicate 
the stomodaeum, sf marks the 
shell field, dotted line outlines 
the region of the prototroch 
(pt). Scale bar equals 20 µm. 
Brightfield images (a, b) of the 
gene expression and confocal 
images (c, d) with F-actin (red), 
cilia (green; pt: prototroch; 
tt: telotroch), and cell nuclei 
staining (cyan). a Dro-mhc_c1 
expression is first present in the 
anterior mesoderm. b Anterior 
mesodermal expression in 
dorsal view. c First F-actin- 
positive domain in the meso-
derm below the shell field in the 
dorso-median region. d Slightly 
further developed trochophore 
larva showing two developing 
myofilaments in the median 
region. A, anterior; D, dorsal; P, 
posterior; V, ventral
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Dro-Bra is present in the ventro-posterior mesoderm and is 
located posteriorly to the developing digestive tract in the 
region of the future hindgut (Fig. 1c, d). No expression of 
Dro-Bra was observed in the veliger larva.

Dro-eve transcripts show high relative expression values 
with respect to other genes in early stages (< 18 hpf), with 
a considerable decrease from the gastrula stage (18–23 hpf) 
onwards (Supplemental Fig. 4a and Supplemental Table 5). 
Using in situ hybridization, Dro-eve expression was first 
detected in the gastrula stage (18 hpf) in three distinct 
domains. One domain corresponds to the dorsal ectoderm 
of the shell field (Fig. 2a, c), while the other two are situated 
ventrally in the developing mesoderm close to the Dro-Bra 
expression domains (Fig. 2a, b). Trochophore larvae (30 hpf) 
show two Dro-eve expression domains, one in the dorsal 
ectoderm in the median region of the shell field and one in 
the ventro-posterior mesoderm (Fig. 2d, e). The mesodermal 

expression of Dro-eve is located posteriorly to the develop-
ing digestive tract and lies adjacent to the expression of Dro-
Bra, with the former extending further laterally (Fig. 2d, e). 
No expression domains of Dro-eve were observed in the 
veliger larva.

Developmental expression of myosin II heavy chain

Dro-mhc candidate genes are relatively lowly expressed in 
early stages (< 18 hpf) with respect to other genes, with a 
slight relative increase in the gastrula stage (18–23 hpf). 
This is followed by further relative increases in the tro-
chophore stage (23–30 hpf) and, more prominently, in the 
veliger stage (> 30 hpf) (Supplemental Fig. 4b and Supple-
mental Table 5). Two Dro-mhc_c1 expression domains are 
first detected in the anterior mesoderm of the early trocho-
phore larva (24 hpf). They are spot-like and situated in the 

Fig. 4  Expression of Mox (Dro-Mox_c2) and myosin II heavy chain 
(Dro-mhc_c1) as well as immunofluorescence staining in Dreissena 
rostriformis trochophore larvae. Anterior is up in all images except 
d, h, and l, which are anterior views. Arrowheads indicate the stomo-
daeum, and sf marks the shell field. Scale bar equals 20 µm. Bright-
field images (a–h) of the gene expression and confocal images (i–l) 
with F-actin (red), cilia (green; at: apical tuft; pt: prototroch; tt: tel-
otroch), and cell nucleus staining (cyan). a Two ventral mesodermal 
expression domains of Dro-Mox_c2. b Dro-Mox_c2 is expressed 
adjacent to and posterior of the developing digestive tract, on either 
side. c Lack of Dro-Mox_c2 expression in the dorsal region. d 
Expression of Dro-Mox_c2 in the ventral mesoderm. e Dro-mhc_c1 

is expressed in the dorsal and ventral mesoderm. f Four ventral meso-
dermal expression domains of Dro-mhc_c1. g Two spot-like and two 
stripe-like mesodermal expression domains of Dro-mhc_c1. h Meso-
dermal expression of Dro-mhc_c1 in the dorsal and ventral region. i 
Earliest developing myofilaments of the larval retractor (lr), the dor-
sal velum retractor (dv), the anlage of the anterior adductor (aa), and 
the ventro-posterior musculature (vpm). j The paired ventro-posterior 
musculature. k Developing dorsal velum and larval retractor (dv, 
lr) and the anlagen of the anterior adductor (aa). l Anterior view of 
developing muscle systems. A, anterior; D, dorsal; L, left; P, poste-
rior; R, right; V, ventral
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Fig. 5  Expression of myosin II heavy chain (Dro-mhc_c1) and myo-
genesis in Dreissena rostriformis veliger larvae. Lateral view in all  
images, anterior faces upwards and dorsal to the left except in c 
which is a dorso-anterior view, e and f which are anterior views 
(dorsal is up), and i which is a posterior view (dorsal is up). Arrow-
heads indicate the stomodaeum. Scale bar equals 20 µm. Brightfield 
images of the gene expression (a and e) and confocal images (b–d 
and f–i) with F-actin (yellow–red), cilia (green), and cell nuclei stain-
ing (cyan). a Expression of Dro-mhc_c1 is in the central and dorsal 
mesoderm. Velum (ve). b First distinct muscle bundles are the dorsal 
velum retractor (dv), the ventral velum retractor (vv), and the larval 
retractor (lr). First appearance of the velum muscle ring (vr), the (pal-

lial) muscles around the mantle margin (mm), and the merged ante-
rior adductors (aa). c D-shaped veliger larva showing the median 
velum retractor (mv) with a branch (mv-bra) and interconnection 
(mv-co). d Same stage as in c with the typical cilia on the velum (ve), 
pre-anal tuft (pat), and telotroch (tt). e Dro-mhc_c1 in the dorsal and 
lateral mesoderm of the D-shaped veliger larva. f Late veliger larva 
with prominent anterior adductor (aa). g Same stage as in f addition-
ally showing the foot retractor (fr), the accessory velum retractor (av), 
and two mantle retractors (mr). h Slightly older late veliger larva as in 
g showing the connection of the foot retractors (fr-co) in the median 
plane. i Posterior view of the same stage as in h. A, anterior; D, dor-
sal; P, posterior; V, ventral
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anterior region between the developing digestive tract and 
the shell field, close to the first F-actin positive cells that 
appear at ~30 hpf (Fig. 3). In the trochophore larva (30 hpf), 
four expression domains of Dro-mhc_c1 are present in the 
dorsal mesoderm. Two of them are stripe-like and extend 
along the anterior–posterior axis (Fig. 4e, g). These domains 
likely give rise to the developing dorsal velum retractors and 
the larval retractors (Fig. 4i, k). The other two Dro-mhc_c1 
expression domains are spot-like and located in the dorso-
anterior region (Fig. 4e, g, h). Their position corresponds to 
that of the anlagen of the anterior adductors (Fig. 4i, k, l). 
Additionally, four expression domains are found in the ven-
tral mesoderm, adjacent to and posterior of the developing 
digestive tract as well as in the region of the ventro-posterior 
musculature and the Dro-Mox_c2 domain (Fig. 4). The ven-
tral expression domains of Dro-mhc_c1 are slightly larger 
than those of Dro-Mox_c2 (Fig. 4b, f).

In the D-shaped veliger larva (70 hpf), three expres-
sion domains of Dro-mhc_c1 are present. Two of them are 
located laterally on both sides of the larva’s median region, 
at the sites of the velum retractors and larval retractors 
(Fig. 5). The third expression domain is in the dorsal region 
between the shell plates, in the region of the developing 
anterior adductors (Fig. 5).

Mox expression

Dro-Mox_c2 shows low relative expression levels with 
respect to other genes and is only briefly upregulated in the 
trochophore and veliger stages at 26 and 36 hpf, respectively 

(Supplemental Fig. 4a and Supplemental Table 5). Dro-
Mox_c2 expression is first (and only) detected in the ventral 
mesoderm of the trochophore larva (30 hpf). Expression 
of Dro-Mox_c2 is adjacent to and posterior of the devel-
oping digestive tract, on either side (Fig. 4a, b, d). These 
expression domains correspond to the region of the ventro-
posterior musculature and to the ventral expression domain 
of Dro-mhc_c1 (Fig. 4). No Dro-Mox_c2 expression was 
observed in the veliger larva.

Myogenesis

F-actin staining is first detected in the dorso-median meso-
derm of the D. rostriformis trochophore larva (30 hpf). The 
paired domains are situated below the median region of the 
shell field (Figs. 3c, d and 6c). From here, the first pair of 
myofilaments emerges, which gives rise to the dorsal velum 
retractors and the developing ventral larval retractors that lie 
below the shell field. The developing dorsal velum retractors 
project into the anterior region. In contrast, the developing 
ventral larval retractors extend into the posterior region with 
a slightly ventral direction (Figs. 4i, k and 6d). The first anla-
gen of the anterior adductors also form in the trochophore 
larva, in the dorso-anterior mesoderm below the shell field, 
and above the developing dorsal velum retractors (Figs. 4i, 
k, l and 6d). In addition, a pair of transient ventro-posterior 
muscles emerges that lies posterior to the developing diges-
tive tract (Figs. 4i, j, l and 6d).

The first distinct muscle bundles develop in the early 
(D-shaped) veliger larva (40 hpf). The mantle (pallial) mus-
culature is formed around the edges of the mantle (Figs. 5b 
and 6f). Two fine interconnections of the anterior adduc-
tors are visible and attach dorsally to the embryonic shell 
(Figs. 5b, c and 6f). A pair of ventral larval retractor muscles 
attaches to the embryonic shell near the hinge and extends 
ventrally into the region of the hindgut (Figs. 5b and 6f). 
The velum musculature consists of the newly formed velum 
muscle ring that underlies the velum (Figs. 5b and 6f). In 
addition, a pair of dorsal velum retractors inserts posteri-
orly at the embryonic shell near the hinge and at the dor-
sal part of the velum. The second pair of velum retractors, 
the ventral velum retractors, develops between the dorsal 
velum retractors and the ventral larval retractors and attaches 
in the median region of the velum and posteriorly at the 
embryonic shell near the hinge (Figs. 5b, d and 6f). The 
third pair of velum retractors, the median velum retractors, 
emerges later in the D-shaped veliger larva. The attachment 
is posterior to the embryonic shell near the hinge and at the 
velum between the dorsal velum retractors and the ventral 
velum retractors (Figs. 5d and 6g). A median branch of the 
median velum retractors runs towards the ventral part in the 
region of the hindgut. This branch shows a connection to 
the median velum retractor (Figs. 5c, h and 6g). In the late 

Fig. 6  Schematic summary of gene expression and myogenesis in 
Dreissena rostriformis. Lateral view in all images with anterior fac-
ing upwards and dorsal to the left except in i which is an anterior 
view and k which is a dorsal view. A (anterior), an (anus), apical 
tuft (at), black arrowheads (blastopore/stomodaeum), D (dorsal), mo 
(mouth), P (posterior), pre-anal tuft (pat), prototroch (pt), sf (shell 
field), st (stomach), telotroch (tt), V (ventral), ve (velum). a Ciliated 
gastrula with mesodermal expression of Brachyury (Bra) and even-
skipped (eve), and ectodermal expression of eve. b Trochophore larva 
with mesodermal expression of myosin II heavy chain (mhc). c Late 
trochophore larva showing mesodermal expression of Mox and mhc, 
as well as the first F-actin-positive domain. d Trochophore larva with 
gene expression in the mesoderm (Bra, eve), endoderm (Bra), and 
ectoderm (eve). In addition, the first muscles appear: dorsal velum 
retractor, larval retractor, anlage of the anterior adductor, and ventro-
posterior musculature. e D-shaped veliger larva with mhc expression 
in the dorsal and median mesoderm. f Same stage as in e showing 
first distinct muscle bundles: dorsal velum retractor, ventral velum 
retractor, larval retractor, velum muscle ring, pallial musculature, 
and two-partite anterior adductor. g Slightly older stage as in f with 
a median velum retractor. h Late veliger larva with additional mus-
cles: accessory velum retractor, foot retractor, and two mantle retrac-
tors. i Slightly older stage as in h showing the connection of both foot 
retractors. j, k Adult Dreissena myoanatomy (adapted from Eckroat 
et  al., 1993) including the anterior and the posterior adductor, the  
dorsal–ventral musculature (DVM), and the anterior byssus retractor

◂



 S. M. Schulreich et al.

1 3

veliger larva (102 hpf), the fourth pair of velum retractors 
(accessory velum retractors), two pairs of mantle retractors, 
and one pair of foot retractors become visible (Figs. 5g and 
6h). The accessory velum retractors are located between the 
anterior adductors and the dorsal velum retractors. They 
attach to the most dorsal region of the velum. Two pairs of 
mantle retractors are situated between the dorsal and the 
ventral velum retractors, respectively, and both connect to 
the mantle. The foot retractor emerges as a branch of the 
dorsal velum retractor and extends into the region of the 
developing foot (Figs. 5g and 6h). In the late veliger larva, 
the anterior adductors increase in size. Shortly thereafter, the 
foot retractors become interconnected and form a U-shape 
(Figs. 5f, h, i and 6i).

Discussion

Comparative Brachyury expression in Bilateria

In Dreissena rostriformis, Bra is expressed in the develop-
ing mesoderm in the gastrula stage and in the trochophore 
larva, with additional expression in the developing foregut. 
A very similar Bra expression pattern is found in the gastrula 
of the Pacific oyster Crassostrea gigas (Tan et al., 2017). In 
the spiny oyster Saccostrea kegaki, first Bra expression is in 
the vegetal region of the 16-cell stage. After that, Bra is also 
expressed in the putative mesoderm in the ventral region, 
similar to C. gigas and D. rostriformis. In S. kegaki, Bra 
is additionally expressed in the ectoderm along the ventral 
midline and near the blastopore. After the evagination of the 
shell field, Bra is restricted to the presumptive anus region, 
similar to D. rostriformis. In contrast to D. rostriformis, no 
Bra expression was found in the foregut of S. kegaki (Kin 
et al., 2009). In most gastropods, Bra expression is similar 
to that of bivalves, as it is expressed in the mesoderm and 
digestive tract, as well as ectodermally near the blastopore 
and along the ventral midline (Fig. 7; Lartillot et al., 2002; 
Perry et al., 2015). Since the latter expression domain is 
only present in mollusks, it seems to be an apomorphy of 
Mollusca, while the other expression domains also occur in 
other taxa (Fig. 7).

Bra expression has been described near and/or around 
the blastopore and often also in the digestive tract in a vast 
number of metazoans (Fig. 7; e.g., Peter & Davidson, 2011;  
Green & Akam, 2014; Hejnol & Martín-Durán, 2015; 
Martín-Durán et  al., 2017; Sebé-Pedrós & Ruiz-Trillo, 
2017). This indicates that Bra appears to have a conserved 
role in blastopore and digestive tract formation amongst 
bilaterian animals (Fig. 7). Mesodermal expression of Bra 
has been reported in most nephrozoan taxa (protostomes 
and deuterostomes), except for a few spiralians, e.g., ecto-
procts, phoronids, and chaetognaths, where Bra expression 

was not detected in the mesoderm (Fig. 7; Andrikou et al., 
2019; Green & Akam, 2014; Hejnol & Martín-Durán, 2015; 
Kusch & Reuter, 1999; Martín-Durán et al., 2012, 2017; 
Nishino et al., 2001; Perry et al., 2015; Peter & Davidson, 
2011; Peterson et al., 1999; Satou & Imai, 2015; Takada 
et al., 2002; Terazawa & Satoh, 1997; Vellutini et al., 2017). 
Since mesodermal expression of Bra appears to be absent 
in the acoel Convolutriloba longifissura, expression of Bra 
in the mesoderm may have evolved in the lineage leading 
to the nephrozoans, with a possible loss of function in vari-
ous spiralians and nematodes, whereby Bra is absent from 
the genome of Caenorhabditis elegans altogether (Fig. 7; 
Hejnol & Martindale, 2008a; Martín-Durán & Romero, 
2011; Pocock et  al., 2004; Sebé-Pedrós & Ruiz-Trillo, 
2017). Accordingly, the data currently available suggest 
that Brachyury was expressed during blastopore and diges-
tive tract development in the last common ancestor (LCA) 
of Bilateria. In addition, Brachyury was likely involved 
in mesoderm formation in the LCA of Nephrozoa, with a 
novel expression of Bra along the ventral midline in the 
molluscan ectoderm (Fig. 7).

Comparative even‑skipped expression in Metazoa

In the gastrula and the trochophore larva of Dreissena ros-
triformis, eve is found in the developing mesoderm and in 
the ectoderm of the shell field. These constitute the first eve 
expression data for any mollusk. In a number of bilaterians 
and the cnidarian Nematostella vectensis, eve is expressed 
in the ectoderm, which is commonly associated with hind-
gut formation and neurogenesis (Fig. 8; Ikuta et al., 2004; 
Martín-Durán et al., 2017; Ryan et al., 2007; Vellutini et al., 
2017). Accordingly, ectodermal expression of eve seems to 
be a conserved feature across pan-bilaterian taxa (Fig. 8).

Expression of eve during mesoderm formation has been 
documented in vertebrates and the cephalochordate amphi-
oxus, as well as in the majority of protostomes, including 
most annelids, an ectoproct, C. elegans, and arthropods 
(Fig. 8; Ruiz et al., 1989; Ferrier et al., 2001; Seebald & 
Szeto, 2011; Kozin et al., 2016; Martín-Durán et al., 2017; 
Vellutini et al., 2017). In Artemia franciscana, Drosophila, 
and C. elegans, eve is additionally expressed in mesoderm  
derivatives such as muscle and/or heart cells, and eve  
expression is required for limb development in the mouse 
and zebrafish (Ahringer, 1996; Copf et al., 2003; Fujioka 
et al., 2005; Hérault et al., 1996; Sordino et al., 1996). How-
ever, eve was not found to be expressed in the mesoderm in a 
few protostomes, including brachiopods, a nemertean, and a  
priapulid, as well as in some deuterostomes, e.g., a sea urchin  
and the ascidian Ciona intestinalis (Fig. 8; Ikuta et al., 2004; 
Li et al., 2014; Martín-Durán & Hejnol, 2015; Martín-Durán 
et al., 2015, 2017). Since eve is neither expressed in the 
mesoderm of the acoel C. longifissura, it appears that eve 
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may have evolved a role in mesoderm formation only after 
the acoel-nephrozoan split with loss of function in multiple 
lineages. This notion is further supported by absence of the 

even-skipped gene in ctenophores, placozoans, and porifer-
ans (Fig. 8; Hejnol & Martindale, 2008b; Leininger et al., 
2014; Ryan et al., 2010; Schierwater et al., 2008).

Fig. 7  Comparative expression of Brachyury (Bra) in Metazoa. X: 
absence of a Brachyury ortholog in the genome, ?: no data available, 
#: Bra expression in oocytes, in the choanocytes, and in the choano-
derm, *: expression of Bra near the edge of potential ‘outgrowth 
zones’ (Martinelli & Spring, 2003). Phylogeny after Laumer et  al. 

(2019). Comparative analysis implies that Bra has a conserved role 
in digestive tract and blastopore development amongst bilaterian ani-
mals and a conserved role in mesoderm formation in nephrozoans. 
The expression of Bra in the ectoderm along the ventral midline is a 
novelty in mollusks
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Fig. 8  Comparative expression of even-skipped (eve) in Metazoa. 
X: absence of an eve ortholog in the genome, ?: no data available. 
Phylogeny after Laumer et  al. (2019). The data currently available 
indicate that eve was expressed during ectoderm development in the 

last common ancestor (LCA) of Bilateria, while eve was additionally 
involved in mesoderm formation in the LCA of Nephrozoa. Expres-
sion of eve in the ectodermal shell field is an evolutionary novelty of 
Mollusca
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Comparative Mox expression in Metazoa

In the trochophore larva of Dreissena rostriformis, Mox is 
expressed in the ventral mesoderm in the region of the ventral 
mhc domain and at the site of the developing ventro-posterior 
musculature. Mesodermal and/or muscular Mox expression 
is also found in other mollusks, lophotrochozoans, protos-
tomes, chordates, and cnidarians, suggesting that Mox might 
have already played a role in their development in the LCA 
of nephrozoans and cnidarians (Fig. 9; Andrikou & Hejnol, 
2021; Candia & Wright, 1995; Chiang et al., 1994; Chiori 
et al., 2009; Hinman & Degnan, 2002; Ikuta et al., 2004; 
Kozin et al., 2016; Lowe et al., 2006; Mankoo et al., 1999; 
Minguillón & Garcia-Fernàndez, 2002; Neyt et al., 2000; 
Passamaneck et al., 2015; Rallis et al., 2001; Ryan et al., 
2007; Satou & Imai, 2015). The apparent lack of Mox in 
ctenophores, placozoans, poriferans, and C. elegans suggests 
that this gene family emerged at the base of the eumetazoan 
lineage with secondary loss in the nematode (Fig. 9; Ruvkun 
& Hobert, 1998; Ryan et al., 2010; Schierwater et al., 2008).

In the sea urchin embryo and in Drosophila, Mox is 
involved in neurogenesis (Fig.  9; Chiang et  al., 1994; 
Poustka et al., 2007). It thus appears likely that Mox expres-
sion in neural cells may have evolved independently in these 
lineages, but the database is as of yet too scarce to unequivo-
cally resolve this issue.

Comparative larval myoanatomy in Bivalvia

Five distinct muscle systems are present in the veliger larva 
of Dreissena rostriformis, namely the velum muscle ring, 
four pairs of velum retractors, one pair of ventral larval 
retractor, one pair of foot retractor, the mantle muscula-
ture including the muscles of the pallial line, and two pairs 
of mantle retractors, as well as an initially paired anterior 
adductor (Figs. 6 and 10). A posterior adductor muscle and 
pedal plexus (foot musculature), as present in the adult, were 
not found, which most likely emerge in late larval stages or 
after metamorphosis.

The velum muscle ring degenerates prior to or at meta-
morphosis and has been reported in dreissenids, teredi-
nids, and mytilids but not in other bivalve larvae (Fig. 10a; 
Audino et al., 2015; Dyachuk & Odintsova, 2009; Kurita 
et al., 2016; Li et al., 2019; Sun et al., 2020; Wurzinger-
Mayer et al., 2014). However, since the prototroch/velum 
muscle ring occurs in almost all class-level sublineages of 
mollusks with indirect development except for the scapho-
pods, it seems most likely that it is part of the molluscan—
and thus also the bivalve—larval muscular ground pattern 
(Fig. 10a; Wanninger & Wollesen, 2015).

The velum retractors have been documented in all 
veliger larvae of autobranch bivalves investigated to 
date and are resorbed prior to or during metamorphosis. 

Their number differs between species; e.g., four pairs are 
common in euheterodonts, except for the teredinid ship-
worm Lyrodus pedicellatus, where two pairs are present 
(Fig. 10a; Wurzinger-Mayer et al., 2014). Interestingly, the 
two velum retractor pairs of the shipworm were suggested 
to transform into the future mantle musculature. However, 
this condition has not been described for any other mollusk 
and, if true, most likely constitutes an apomorphy of this 
genus or species (Wurzinger-Mayer et al., 2014). In pte-
riomorph larvae, four pairs of velum retractors were found 
in pectinids, whereas three pairs are present in oysters and 
two to three pairs were described in mytilids (Fig. 10a; 
Audino et al., 2015; Cragg, 1985; Dyachuk & Odintsova, 
2009; Kurita et al., 2016; Li et al., 2019; Sun et al., 2019, 
2020). Accordingly, three or four pairs of velum retrac-
tors appear most likely to be a part of the myoanatomical 
ground pattern in autobranch bivalve larvae (Fig. 10).

The larval retractors disappear prior to or at metamor-
phosis and are present in most autobranch bivalve lineages, 
even in the semi-direct (brooding) lasaeids (Altnöder & 
Haszprunar, 2008). However, the number of larval retrac-
tors differs amongst species; e.g., one (ventral) pair is com-
mon in imparidents, except in the lasaeids which contain 
three pairs, while in pteriomorphs, one to five pairs are 
present (Fig. 10a; Audino et al., 2015; Kurita et al., 2016; 
Li et al., 2019; Sun et al., 2020; Wurzinger-Mayer et al., 
2014). Accordingly, one or two pairs of larval retractors  
appear most likely to be a part of the muscular ground 
pattern in autobranch bivalve larvae (Fig. 10).

A dimyarian condition, i.e. the presence of an ante-
rior and a posterior adductor muscle, is common for many 
adult bivalves. They are usually formed in the larva and 
are transiently present in pectinid and oyster larvae that 
as adults only have one adductor. Here, the adult mon-
omyarian condition is achieved by loss of the anterior 
adductor at metamorphosis (Fig. 10a; Audino et al., 2015;  
Cragg, 2016; Drew, 1899, 1901; Li et al., 2019; Sun et al., 
2019, 2020; Wurzinger-Mayer et al., 2014). Interestingly, 
a transient larval adductor is also present in the parasitic 
glochidium larva of unionids, but the adult anterior and 
posterior adductors appear to develop independently dur-
ing metamorphosis (Herbers, 1913).

In most bivalves, the muscles of the pallial line develop 
in later larval stages while the paired (adult) mantle retrac-
tors are formed after metamorphosis. Their number differs 
amongst species; e.g., two pairs of retractors are present 
in dreissenids and montacutids, while three pairs were 
found in the teredinids (Fig. 10a; Dyachuk & Odintsova, 
2009; Li et al., 2019; Sun et al., 2020; Wurzinger-Mayer 
et al., 2014). This variation is also found in the (adult) foot 
retractors, where one pair is present in dreissenids and 
montacutids, while two pairs are common in most other 
autobranchs (Fig. 10a).
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Fig. 9  Comparative expression of Mox in Metazoa. X: absence of a 
Mox ortholog in the genome, ?: no data available. Phylogeny after 
Laumer et al. (2019). Comparative analysis suggests that Mox has an 

ancestral role in mesoderm and possibly muscle formation in Bila-
teria. Expression of Mox during neurogenesis has evolved indepen-
dently in arthropods and echinoderms
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Taken together, it appears that at least a velum muscle 
ring, three or four pairs of velum retractors, one or two pairs 
of larval retractors, an anterior and a posterior adductor, and 
two pairs of foot retractors together with the plexus-like foot 
musculature as well as the mantle musculature including 

muscles of the pallial line and possibly two pairs of mantle 
retractors, are part of the muscular ground pattern of auto-
branch bivalve larvae (Fig. 10). The two-partite condition 
of the anterior adductor in early development throughout 
Autobranchia might argue for a paired anterior adductor in 

Fig. 10  Muscle systems in bivalve lineages. a Bivalve phylogeny 
(after Combosch et  al. (2017)) with larval muscle systems in vari-
ous clades. ?: unknown, numbers: number of paired retractors/adduc-
tors,  > : set of paired mantle retractors, a.m.: after metamorpho-
sis. Colour code indicates individual muscle systems. Comparative  
analysis implies that five major muscle systems were present in the 
last common ancestor (LCA) of autobranch bivalve larvae: The velum 
musculature including three or four pairs of velum retractors and a 
velum muscle ring, the larval retractors (one or two pairs), the adduc-
tor system containing the anterior as well as the posterior adductor, 

the mantle musculature including the muscles of the pallial line and 
possibly two pairs of mantle retractors, and the foot musculature con-
taining two pairs of foot retractors together with the pedal plexus. The 
data presently available suggest that the muscular ground pattern of 
bivalve larvae includes at least one pair of velum retractors, a velum 
muscle ring, and the anterior and the posterior adductor. b Schematic 
drawing of the hypothetical larval myoanatomy in the LCA of auto-
branch bivalves. Note that the exact number of velum, larval, and 
mantle retractors remains unclear for the LCA of autobranch bivalve 
larvae. an, anus; mo, mouth; st, stomach; ve, velum



 S. M. Schulreich et al.

1 3

the LCA of autobranchs or even Bivalvia. For further assess-
ments concerning the ground plan of the entire Bivalvia, 
more data on the Protobranchia, the sister taxon to all other 
bivalves, are required.

Conclusion

The present study shows that expression of Bra, eve, and 
Mox in the quagga mussel Dreissena rostriformis is congru-
ent with numerous other bilaterian taxa. The data currently 
available suggest that Mox had an ancestral role in bilaterian 
mesoderm formation, while even-skipped and Brachyury 
have obtained their mesodermal expression domains after 
the xenacoelomorph-nephrozoan split. The data on bivalve 
myogenesis indicate that the muscular ground pattern of 
autobranch—and maybe even all—bivalve larvae contains 
a highly complex arrangement of larval retractor muscles 
and heterochronically shifted, functional adult systems that 
undergo significant, taxon-specific remodelling and reduc-
tion events during metamorphosis.
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