222 research outputs found

    Five Questions on Prion Diseases

    Get PDF
    Five Questions on Prion Disease

    Study on fractional vegetation cover dynamic in the Yellow River Basin, China from 1901 to 2100

    Get PDF
    Increasing climate change makes vegetation dynamic. At the same time, dynamic changes in vegetation not only have a feedback effect on climate change, but also affect the hydrological cycle process. Therefore, understanding the vegetation change and its response to climate change is a priority for predicting future climate change and studying the impact of vegetation change on the hydrological cycle. In this study, the Yellow River Basin in China is the study area. Based on the analysis of the evolution characteristics of meteorological elements and fractional vegetation cover (FVC), the delta downscaling Coupled Model Intercomparison Project Phase 6 (CMIP6) models are optimized. The empirical orthogonal function (EOF) and singular value decomposition (SVD) methods are used to investigate the impact of climate change on vegetation in the Yellow River Basin. The results show that: (1) in the four scenarios (SSP126, SSP245, SSP370, and SSP585), FVC in the Yellow River Basin from 2022 to 2100 shows an increasing trend, SSP370 (0.017 10a–1) > SSP126 (0.014 10a–1) > SSP245 (0.0087 10a–1) > SSP585 (0.0086 10a–1). Spatially, FVC in most regions of the Yellow River Basin show an increasing trend under the four scenarios, and the degraded areas are concentrated in a small part of the Yellow River headwaters. (2) There is a significant positive correlation between FVC and precipitation (Pre) and temperature (Tem) under four scenarios in the Yellow River Basin from 2022 to 2100. Under the same scenario, the annual average temperature can be considered as the dominant factor of FVC change in the Yellow River Basin. Under different scenarios, the impact of climate change on FVC under the high emission scenarios is greater than that under the low emission scenarios. This study will help to better understand the response of vegetation to climate change and provide a scientific basis for formulating ecological protection measures to cope with future climate change in the Yellow River Basin

    Chaotic Path Planner of Autonomous Mobile Robots Based on the Standard Map for Surveillance Missions

    Get PDF
    This paper proposes a fusion iterations strategy based on the Standard map to generate a chaotic path planner of the mobile robot for surveillance missions. The distances of the chaotic trajectories between the adjacent iteration points which are produced by the Standard map are too large for the robot to track. So a fusion iterations strategy combined with the large region iterations and the small grids region iterations is designed to resolve the problem. The small region iterations perform the iterations of the Standard map in the divided small grids, respectively. It can reduce the adjacent distances by dividing the whole surveillance workspace into small grids. The large region iterations combine all the small grids region iterations into a whole, switch automatically among the small grids, and maintain the chaotic characteristics of the robot to guarantee the surveillance missions. Compared to simply using the Standard map in the whole workspace, the proposed strategy can decrease the adjacent distances according to the divided size of the small grids and is convenient for the robot to track

    Adverse Effects of Simulated Hyper- and Hypo-Phosphatemia on Endothelial Cell Function and Viability

    Get PDF
    Dysregulation of phosphate homeostasis as occurs in chronic kidney disease is associated with cardiovascular complications. It has been suggested that both hyperphosphatemia and hypophosphatemia can cause cardiovascular disease. The molecular mechanisms by which high or low serum phosphate levels adversely affect cardiovascular function are poorly understood. The purpose of this study was to explore the mechanisms of endothelial dysfunction in the presence of non-physiologic phosphate levels.We studied the effects of simulated hyper- and hypophosphatemia in human umbilical vein endothelial cells in vitro. We found both simulated hyperphosphatemia and hypophosphatemia decrease eNOS expression and NO production. This was associated with reduced intracellular calcium, increased protein kinase C β2 (PKCβ2), reduced cell viability, and increased apoptosis. While simulated hyperphosphatemia was associated with decreased Akt/p-Akt, Bcl-xl/Bax ratios, NFkB-p65 and p-Erk abundance, simulated hypophosphatemia was associated with increased Akt/p-Akt and Bcl-xl/Bax ratios and p-Mek, p38, and p-p38 abundance.This is the first demonstration of endothelial dysfunction with hypophosphatemia. Our data suggests that both hyperphosphatemia and hypophosphatemia decrease eNOS activity via reduced intracellular calcium and increased PKCβ2. Hyperphosphatemia also appears to reduce eNOS transcription via reduced signaling through PI3K/Akt/NF-kB and MAPK/NF-kB pathways. On the other hand, hypophosphatemia appears to activate these pathways. Our data provides the basis for further studies to elucidate the relationship between altered phosphate homeostasis and cardiovascular disease. As a corollary, our data suggests that the level of phosphate in the culture media, if not in the physiologic range, may inadvertently affect experimental results

    Extremely thin perfect absorber by generalized multipole bianisotropic effect

    Full text link
    Symmetry breaking plays a crucial role in understanding the fundamental physics underlying numerous physical phenomena, including the electromagnetic response in resonators, giving rise to intriguing effects such as directional light scattering, supercavity lasing, and topologically protected states. In this work, we demonstrate that adding a small fraction of lossy metal (as low as 1×10−61\times10^{-6} in volume), to a lossless dielectric resonator breaks inversion symmetry thereby lifting its degeneracy, leading to a strong bianisotropic response. In the case of the metasurface composed of such resonators, this effect leads to unidirectional perfect absorption while maintaining nearly perfect reflection from the opposite direction. We have developed more general Onsager-Casimir relations for the polarizabilities of particle arrays, taking into account the contributions of quadrupoles, which shows that bianisotropy is not solely due to dipoles, but also involves high-order multipoles. Our experimental validation demonstrates an extremely thin terahertz-perfect absorber with a wavelength-to-thickness ratio of up to 25,000, where the material thickness is only 2% of the theoretical minimum thickness dictated by the fundamental limit. Our findings have significant implications for a variety of applications, including energy harvesting, thermal management, single-photon detection, and low-power directional emission

    Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Get PDF
    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure

    Effect of Extreme Acid Combined with Heat Induction on Structure and Properties of Soybean Protein Isolate Microgel

    Get PDF
    Soybean protein isolate microgel (SPIM) was prepare by extreme acid combined with heat induction. The structural changes and molecular interactions of the protein, and the microstructure and gel properties of the microgel were explored by fluorescence spectroscopy, infrared spectroscopy, and atomic force microscopy, and the effects of different heat induction temperatures (25, 45, 55, 65, 75 and 85 ℃) on the structure and properties of the microgel were evaluated. The results showed that the relative content of β-sheet increased during the formation of SPIM, and electrostatic interaction, hydrophobic interaction and hydrogen bonding were involved in the self-assembly of microgels. In addition, with increasing temperature, the surface hydrophobicity index of SPIM increased first and then decreased, and that the thermal stability gradually increased. Compared with extreme acid, the specific surface area, emulsifying activity, emulsion stability and water-holding capacity of the microgel formed by extreme acid combined with heat induction at 75 ℃ were significantly increased (P < 0.05). Overall, extreme acid combined with heat induction is an effective method to regulate the structure and properties of protein microgels, and the quality of microgels can be improved by precise temperature control

    Escherichia coli infection indicates favorable outcomes in patients with infected pancreatic necrosis

    Get PDF
    IntroductionInfected pancreatic necrosis (IPN) is a severe complication of acute necrotizing pancreatitis with increasing morbidity. Escherichia coli is the most frequently cultured microorganism in IPN. However, the implications of Escherichia coli infection on the outcomes of patients with IPN remain unclear. Therefore, this study aimed to evaluate the clinical impacts of Escherichia coli infection on IPN.MethodsA prospective database with consecutive patients with IPN between January 2010 and April 2022 at a tertiary hospital was post-hoc analyzed. The clinical and microbiological characteristics, surgical management, and follow-up data of patients with and without Escherichia coli infection were compared.ResultsA total of 294 IPN patients were enrolled in this cohort. Compared with non-Escherichia coli infection cases (n=80, 27.2%), patients with Escherichia coli infection (n=214, 72.8%) were characterized by more frequent polymicrobial infections (77.5% vs. 65.0%, P=0.04) but a lower occurrence of severe acute pancreatitis (SAP) (42.5% vs. 61.7%, P=0.003). In addition, significantly lower mortality (12.5% vs. 30.4%, p=0.002), fewer step-up surgical interventions (73.8% vs. 85.1%, P=0.025), and a lower rate of multiple organ failure (MOF) (25.0% vs. 40.2%, P=0.016) were also observed in patients with Escherichia coli infection. Multivariate analysis of mortality predictors indicated that MOF (odds ratio [OR], 6.197; 95% confidence interval [CI], 2.373–16.187; P&lt;0.001) and hemorrhage (OR, 3.485; 95% CI, 1.623–7.487; P=0.001) were independent predictors associated with higher mortality in patients with IPN. Escherichia coli infection was significantly associated with a lower mortality (OR, 0.302; 95% CI, 0.121–0.751; P= 0.01).ConclusionEscherichia coli infection indicates a favorable prognosis in patients with IPN, although the mechanism needs further investigation
    • …
    corecore