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Vitiligo is an autoimmune disease with a strong genetic component, characterized
by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic
factors are known to play key roles in vitiligo through discoveries in association studies
and family studies. Previously, vitiligo susceptibility genes were mainly revealed through
linkage analysis and candidate gene studies. Recently, our understanding of the genetic
basis of vitiligo has been rapidly advancing through genome-wide association study
(GWAS). More than 40 robust susceptible loci have been identified and confirmed to be
associated with vitiligo by using GWAS. Most of these associated genes participate in
important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with
unknown functions in the pathogenesis of vitiligo have also been identified, indicating
that additional molecular mechanisms may contribute to the risk of developing vitiligo. In
this review, we summarize the key loci that are of genome-wide significance, which have
been shown to influence vitiligo risk. These genetic loci may help build the foundation
for genetic diagnosis and personalize treatment for patients with vitiligo in the future.
However, substantial additional studies, including gene-targeted and functional studies,
are required to confirm the causality of the genetic variants and their biological relevance
in the development of vitiligo.
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INTRODUCTION

Vitiligo is a relatively common skin disease, and is an acquired pigmentary disorder characterized
by areas of depigmented skin resulting from loss of epidermal melanocytes. The prevalence
of this disease varies from 0.2% to 1% in various global populations without sex predilection
(Spritz, 2008). The pathogenesis of vitiligo remains elusive, although many theories such as
autoimmune hypothesis, genetics theory, reactive oxygen species model, zinc-α2-glycoprotein
deficiency hypothesis, viral theory, intrinsic theory and biochemical, molecular and cellular
alterations accounting for loss of functioning melanocytes in vitiligo were elaborated to clarify
vitiligo pathogenesis and showed that it was a multifactorial disease involving many different
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interactions (Mohammed et al., 2015). In this review, we mainly
summarize the recent studies in the genetics of vitiligo through
genome-wide association studies (GWASs), with a focus on the
susceptibility genes or loci (Table 1) that have been identified to
date, which implicate important pathways in the pathogenesis of
vitiligo.

THE CONCEPT OF VITILIGO GENETICS

The earliest evidence relating to the genetic basis of vitiligo
was a description provided by Addison in the year of 1855,
Addison presented a patient with idiopathic adrenal insufficiency,
generalized vitiligo (GV), and pernicious anemia (PA; Addison,
1855). In the 1950s, perhaps the first time to address the

possible inheritance of GV, Stüttgen and Teindel described
multigenerational families with multiple cases of GV and other
autoimmune diseases, concluding the possibility that GV is
likely an autosomal dominant inheritance disease (Teindel, 1950;
Stüttgen, 1950). Many subsequent studies around the world
confirmed frequent clustering of vitiligo cases within families
(Alkhateeb et al., 2003; Zhang et al., 2004b; Sun et al., 2006;
Zhang et al., 2009). The genetics of vitiligo cannot be explained by
simple Mendelian genetics, and it is characterized by incomplete
penetrance, multiple susceptibility loci, and genetic heterogeneity
factors. Interestingly, many of the risk loci that have been
identified are shared between vitiligo and other autoimmune
diseases by GWASs (Table 2), implying that common molecular
pathways exist among various autoimmune disorder processes.

TABLE 1 | A summary of loci associated with vitiligo through GWAS, GWAS-MA studies up to 2015-10.

Chr Reported Gene(s) SNP-risk allele Context P-value OR[95% CI] Population Reference

1p13.2 PTPN22 rs2476601-A Intron 1.31E-07 1.39[1.23–1.57] European Jin et al., 2010a

1p36.23 RERE rs4908760-G Intron 7.07E-15 1.36[1.26–1.48] European Jin et al., 2010a

2q24.2 IFIH1 rs2111485-G Intergenic 4.91E-15 1.30[NR] European Jin et al., 2012a

3q13.33 CD80 rs59374417-C Intergenic 3.78E-10 1.34[NR] European Jin et al., 2012a

3q28 LPP rs9851967-? intron 8.57E-08 1.14[1.09–1.19] Han Chinese Tang et al., 2013

rs1464510-T intron 1.01E-11 1.31[1.21–1.41] European Jin et al., 2010a

4p16.1 CLNK rs16872571-C Intergenic 1.96E-08 1.21[NR] European Jin et al., 2012a

6p21.32 C6orf10, BTNL2 rs7758128-A Intergenic 3.29E-16 2.19[1.80–2.65] European Jin et al., 2010a

rs7758128-A Intergenic 1.36E-09 1.5[NR] European Jin et al., 2011

BTNL2, HLA-DRA rs3806156-T Intron 7.22E-19 1.42[1.32–1.54] European Jin et al., 2010a

6p21.33 HLA-C, HLA-B rs11966200-A Intron 1.48E-48 1.90[1.74–2.07] East Asian Quan et al., 2010

HLA rs9468925-? Intergenic 2.21E-33 1.35[1.28–1.41] East Asian Quan et al., 2010

6p22.1 HLA-A, HCG9 rs3823355-T NearGene-5 9.05E-23 1.50[1.39–1.63] European Jin et al., 2010a

6q15 BACH2 rs3757247-A Intron 2.53E-08 1.20[NR] European Jin et al., 2012a

6q27 RNASET2, FGFR1OP, CCR6 rs2236313-T Intron 9.72E-17 1.20[1.15–1.25] East Asian Quan et al., 2010

rs6902119-C Intergenic 9.75E-14 1.17[1.13–1.23] East Asian Quan et al., 2010

SMOC2 rs13208776-? Intron 8.51E-08 NR Romanian Birlea et al., 2010

8q24.22 SLA rs853308-G Intron 1.58E-08 1.20[NR] European Jin et al., 2012a

10p15.1 IL2RA rs706779-A Intron 2.78E-09 1.27[1.17–1.37] European Jin et al., 2010a

10q22.1 SLC29A3, CDH23 rs1417210-C Intergenic 1.83E-08 1.14[1.09–1.19] Han Chinese Tang et al., 2013

10q22.3 ZMIZ1 rs11593576-? Intron 8.31E-07 1.14[1.09–1.20] East Asian Quan et al., 2010

10q25.3 CASP7 rs3814231-G Intron 3.56E-08 1.23[NR] European Jin et al., 2012a

11p13 CD44 rs10768122-G UTR-3 1.78E-09 1.22[NR] European Jin et al., 2012a

11q14.3 TYR rs1393350-G Intron 1.60E-18 1.53[1.39–1.68] European Jin et al., 2010a

11q21 TYR rs4409785-C Intergenic 1.57E-13 1.34[NR] European Jin et al., 2012a

11q23.3 CXCR5, DDX6 rs638893-C Intergenic 2.47E-09 1.22[1.14–1.30] Han Chinese Tang et al., 2013

12q13.2 PMEL, IKZF4 rs10876864-G NearGene-5 8.07E-12 1.18[1.13–1.24] Han Chinese Tang et al., 2013

IKZF4 rs2456973-C Intron 2.75E-14 1.29[NR] European Jin et al., 2012a

12q24.12 SH2B3 rs4766578-T Intron 3.54E-18 1.32[NR] European Jin et al., 2012a

14q12 GZMB rs8192917-G Missense 3.44E-08 1.28[1.17–1.39] European Jin et al., 2010a

rs2273844-A NearGene-5 6.78E-08 1.27[1.17–1.39] European Jin et al., 2010a

15q13.1 OCA2, HERC2 rs1129038-C UTR-3 3.91E-08 1.22[NR] European Jin et al., 2012a

16q12.2 KIAA1005 rs3213758-A Missense 6.20E-11 2.77[2.04–3.76] Korean Cheong et al., 2013

16q24.3 MC1R rs9926296-A Intron 1.82E-13 1.27[NR] European Jin et al., 2012a

19p13.3 TICAM1 rs6510827-T Intron 8.80E-08 1.19[NR] European Jin et al., 2012a

21q22.3 UBASH3A rs11203203-A Intron 1.26E-09 1.27[1.18–1.38] European Jin et al., 2010a

22q13.1 C1QTNF6 rs229527-T Missense 2.21E-16 1.38[1.28–1.50] European Jin et al., 2010a

22q13.2 TOB2 rs4822024-G Intergenic 6.81E-10 1.28[NR] European Jin et al., 2012a
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THE GENETIC APPROACHES FOR
VITILIGO

Over the past several decades, a large number of genes and
genomic regions involved in vitiligo susceptibility have been
revealed through linkage analysis and candidate gene studies
(Spritz, 2012). Candidate gene association studies are best suited
to detect genetic signals that represent relatively common causal
variants with modest effect sizes. Moreover, candidate gene
association studies are relatively easy to carry out, usually
involving a simple comparison of allele frequencies in cases
and controls. At least 33 different candidate genes for vitiligo
have been reported on the basis of such studies (Birlea et al.,
2011). However, such studies are usually subject to false positive
results because of the ethnic differences in case-control analyses,
inadequate statistical power and statistical fluctuation, and
inadequate correction for multiple testing both within and across
studies.

Genome-wide linkage study is a method, when executed
correctly, identifies genetic loci of vitiligo in multiplex families.
These studies help to determine the position of the genetic marker
inherited together with a specific disease. Genome-wide linkage

TABLE 2 | Vitiligo risk loci involved in pathways and shared with other
autoimmune diseases.

Function Chromosome Genes Other autoimmune
disease#

HLA regulation for
vitiligo

6p21 HLA region PS, SLE, RA,
T1D, IBD, CD

Immunoregulatory
genes for vitiligo

1p13.2
2q24

PTPN22
IFIH1

RA, SLE
T1D, GD, MS, Lupus

4p16.1 CLNK Gout

6q15 BACH2 Asthma, CD, MS, T1D

6p21.3 BTNL2 T1D, RA, SLE, PS, GD

6q27 CCR6 IBD

8q24 SLA ATD, ALL

10p15 IL2RA T1D, RA, SLE

11q23.3 CXCR5 CC, SLE, MS

12q24 SH2B3 T1D, RA, Lupus

12q13 IKZF4 T1D, AA

21q22.3 UBASH3A SLE

Melanocyte related
genes for vitiligo

6q27
10q22.3

FGFR1OP
ZMIZ1

CD, GD
T2D, CD, IBD

15q13.1 OCA2 AS, GDD, ASD

Apoptotic and cytotoxic
genes

14q11.2
10q22.1

GZMB
SLC29A3

JIA, BD
HS

10q25 CASP7 T1D, RA

Susceptibility loci with
unknown functions for
vitiligo

3q28
22q13.1
6q27

LPP
C1QTNF6
SMOC2

RA
GD, T1D
AITD

PS, Psoriasis; SLE, Systemic lupus erythematosus; RA, Rheumatoid arthritis;
T1D, Type I diabetes; T2D, Type II diabetes; IBD, Inflammatory bowel disease;
CD, Crohn’s disease; GD, Graves’ disease; CC, Colorectal cancer; MS, Multiple
sclerosis; AS, Angelman syndrome; GDD, Global developmental delay; ASD,
Autism spectrum disorder; ALL, Acute lymphoblastic leukemia; JIA, Juvenile
idiopathic arthritis; HS, H syndrome; BD, Behcet’s disease; AITD, Autoimmune
thyroid disease; AA, Alopecia areata.

studies in the Caucasian population multiplex vitiligo families
identified additional linkage signals on chromosomes 7, 8, 9,
11, 13, 17, 19, and 22 (Fain et al., 2003; Spritz et al., 2004). In
addition, this parallels with the genetic linkage studies of vitiligo
in Chinese Han population which detected linkage signals on
chromosomes 1, 4, 6, 14, and 22 (Chen et al., 2005; Liang et al.,
2007). Normally, genetic loci discovered through genome-wide
linkage studies encompass several megabases. The diversity of
proposed regions has created a challenge in fine mapping.

Genome-wide association studies is a high through put
technology, capable of “pin-pointing” disease-causing genes.
Since 2005, GWAS has been proved to be the most powerful
and efficient study design thus far in identifying genetic variants
that are associated with complex diseases. More than 1000 types
of complex diseases and traits have been investigated by this
approach. Since 2010, several GWASs have been performed in
patients with vitiligo in various ethnic populations (Birlea et al.,
2010; Quan et al., 2010; Jin et al., 2011, 2010a, 2012a; Cheong
et al., 2013), these studies have confirmed genetic associations
of almost 40 genes and loci with vitiligo during the past
5 years (Table 1; Figure 1). Recently, Next-Generation DNA Re-
Sequencing and exome sequencing analysis have also been used
for identifying variants of genes for vitiligo (Jin et al., 2012b).

THE SUSCEPTIBLE GENES FOR
VITILIGO FROM GWAS

Human Leukocyte Antigen Genes
The human leukocyte antigen (HLA) is the most gene-dense
region of the genome, encoding more than 120 functional
genes in humans which are distributed over a 3.6 Mbp region.
Many previous studies have found genes in the HLA region
associated with vitiligo, such as HLA-A∗02, HLA-A∗30, HLA-
B∗13, HLA-C∗0602, HLA-DRB1∗04, HLA-DRB1∗07 and HLA-
DQB1∗03 (Tastan et al., 2004; Zhang et al., 2004a; Liu et al.,
2007). GWASs for vitiligo have detected major association
signals in the MHC on chromosome 6p21.3 in Caucasian and
Chinese populations, and there are some specific associations
differed between the two populations. In Caucasians, two major
association peaks in MHC region were detected, the peak in
class I gene region, principally between HLA-A and HCG9,
and in the class II region, mainly between HLA-DRB1 and
HLA-DQA1, in linkage disequilibrium (LD) with HLA-DRB1∗04
(Jin et al., 2010a). In the Chinese population study, the major
MHC association signal was in the class III gene region, though
there was also some evidence for independent association in the
class II region (Quan et al., 2010). In Chinese Han population,
GWAS for vitiligo identified two independent association signals
(rs11966200 and rs9468925) within the HLA region. Further
analyses have suggested that the strong association at rs11966200
might reflect the reported association of the HLA-A∗3001,
HLA-B∗1302, HLA-C∗0602 and HLA-DRB1∗0701 alleles and the
association at rs9468925 might represent a previously unknown
HLA susceptibility allele (HLA-C/HLA-B) (Quan et al., 2010).
Additional studies found that rs9468925 is associated with clinical
features of GV (Liu et al., 2012), andmore importantly, rs9468925
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FIGURE 1 | The reported genes and loci on the chromosomes associated with vitiligo through GWAS and GWAS meta-analysis up to 2015-10. All of
the above marked regions and genes on the chromosomes achieved genome-wide significance (p < 5E-8) in at least one study.

in HLA-C/HLA-B is associated with both psoriasis (PS) and
vitiligo (Zhu et al., 2011), providing first important evidence
that two major skin diseases share a common genetic locus in
the MHC, and revealing that this genetic locus may share the
same molecular mechanism for PS and vitiligo. Genome-wide
analysis has identified rs532098 in the vicinity of HLA-DRB1-
DQA1, showing suggestive evidence of the age of onset for GV
(Jin et al., 2011). All evidences shown here clearly suggest that
HLA genes represent attractive therapeutic targets for vitiligo
pathogenesis.

Immunoregulatory Genes for Vitiligo
Vitiligo is a common autoimmune disease, around 20% of vitiligo
patients manifest concomitant occurrence of other autoimmune
diseases, particularly autoimmune thyroid disease (AMD),
rheumatoid arthritis (RA), late-onset type I diabetes (T1D),
PS, PA, systemic lupus erythematosus (SLE), and Addison’s
disease (AD; Birlea et al., 2010). Outside MHC region, some
susceptibility genes encode immunoregulatory proteins which
involve in biological pathways that are most likely influencing the
development of vitiligo.
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CD44 and CD80
CD44 encodes a cell surface glycoprotein with various functions,
including a role in T cell development (Baaten et al., 2010), and
is associated with lupus (Ramos et al., 2011). CD80 encodes a
surface protein on activated B-cells, monocytes, and dendritic
cells that co-stimulates T cell priming (Peach et al., 1995). Vitiligo
is a CD8 T cell-mediated autoimmune disease and promotes the
longevity of memory T cell responses to melanoma. Studies have
found that HA-specific CD8 T cells are adoptively transferred
into mice expressing HA as a self-antigen in the pancreas, and
HA-specific T cells proliferate in draining lymph nodes and
upregulated CD44 (Hernandez et al., 2001). GWASmeta analysis
(GWAS-MA) of vitiligo has showed suggestive association of
SNP rs4330287 and imputed SNP rs59374417 in CD80, which
was confirmed by replication study and overall meta-analysis
(Jin et al., 2012a). Flow cytometric analysis has found that the
percentage of CD80+ monocytes are significantly increased in
the vitiligo group compared with the controls (Basak et al.,
2008), which may indicate alterations of monocyte function in
the pathogenesis of vitiligo.

SLA and BACH2
GWAS-MA has identified vitiligo-associated loci TG/SLA and
BACH2 in European-derived white (CEU) population (Jin
et al., 2012a). TG encodes thyroglobulin, SLA encodes Src-
like adaptor protein, an inhibitor of T- and B-cell receptor
signaling. It is not apparent what role thyroglobulin might
play in vitiligo pathogenesis, suggesting association of vitiligo
with the TG/SLA locus may derive from SLA, rather than
TG (Jin et al., 2012a). Studies have suggested that SLA might
likewise account for reported association with autoimmune
thyroid disease (ATD; Tomer and Greenberg, 2004) and acute
lymphoblastic leukemia (ALL; Mansha et al., 2010). The GWAS-
MA for vitiligo showed suggestive association of SNPs (nt
90941239-91915693) spanning BACH2, particularly rs3757247,
confirmed by the replication study and overall meta-analysis
(Jin et al., 2012a). BACH2 encodes a transcriptional repressor
of B cells (Sasaki et al., 2000), which is a key regulator of
CD4(+) T-cell differentiation that prevents inflammatory disease
by controlling the balance between tolerance and immunity.
Genetic polymorphisms analysis shows that BACH2 is associated
with asthma, Crohn’s disease (CD), multiple sclerosis (MS) and
T1D (Roychoudhuri et al., 2013).

IFIH1 and TICAM1
IFIH1 and TICAM1 are involved in the innate immune response
system (Kato et al., 2006). GWAS-MA for vitiligo has shown
genome-wide level association with SNP rs2111485 in IFIH1 (Jin
et al., 2012a). IFIH1 encodes an interferon-induced RNA helicase
involved in antiviral innate immune responses, associated with
T1D (Smyth et al., 2006), Graves’ disease (GD) (Sutherland et al.,
2007), MS (Martinez et al., 2008), PS (Li et al., 2010), and
possibly lupus (Gateva et al., 2009). TICAM1, also known as TIR
domain-containing adaptor-inducing IFN-b (TRIF), eventually
activates transcription factors (TF), interferon regulatory factor-
3 (IRF-3), NF-κB and AP-1, leading to the induction of type I
interferons and inflammatory cytokines (Kumeta et al., 2014).

TICAM1 encodes a toll-like receptor adaptor molecule 1, which
mediates innate immune responses to viral pathogens (Seya et al.,
2009). Viral factor has been implicated in the etiopathogenesis of
vitiligo, we speculate that TICAM1 might act as a viral factor in
the pathogenesis of vitiligo.

PTPN22, UBASH3A, and CLNK
PTPN22,UBASH3A, and CLNK are the T-cell–receptor signaling
pathway genes. PTPN22 620W allele plays a role in autoimmune
disorders, and underscores the importance of a genetically
mediated autoimmunemechanism in the pathogenesis of vitiligo.
Evidence shown that the PTPN22 1858C/T variants contribute
to risk of GV in European Caucasian and Mexican populations
(Laberge et al., 2008; Garcia-Melendez et al., 2014), but it does
not appear to play a similar role in the Jordanian population
and Turkish generalized-vitiligo patients (Alkhateeb et al., 2013;
Akbas et al., 2014). A meta-analysis was conducted of the
association between PTPN22 1858 C/T polymorphisms and
vitiligo and found PTPN22 C1858T polymorphism is associated
with vitiligo susceptibility in European population (Song et al.,
2013). Variants of PTPN22 also are associated with a number
of different autoimmune diseases, including RA (Begovich et al.,
2004) and SLE (Kyogoku et al., 2004). There was an association
between GV and nine SNPs in the region spanning UBASH3A on
chromosome 21q22.3; of these SNPs, rs2839511 showed genome
wide significance (Jin et al., 2010a). Functional prediction of the
variants in non-MHC vitiligo loci identified predicted deleterious
variants at UBASH3A confer protection from vitiligo (Jin
et al., 2012a). UBASH3A encodes a regulator of T-cell–receptor
signaling and is associated with T1D (Concannon et al., 2008),
the genotype distribution of rs2277798 is significantly associated
with hematuria in SLE patients (Liu et al., 2015). At 4p16.1, the
GWAS-MA for vitiligo showed suggestive association of SNPs (nt
10702156–10729386) upstream of CLNK, including rs16872571
and several imputed SNPs, particularly rs11940117, confirmed
by the replication study and overall meta-analysis. CLNK
encodes a mast cell immunoreceptor signal transducer, a positive
regulator in immunoreceptor signaling (Wu andKoretzky, 2004).
Haplotype analysis has shown that the TCATTCTGA haplotype
of CLNK is more frequent among patients with gout (Jin et al.,
2015).

IKZF4, IL2RA, and BTNL2
IKZF4, IL2RA, and BTNL2 are involved in T-cell activation.
Two GWASs have identified IKZF4 as one of the susceptible
genes for GV (Jin et al., 2012a; Tang et al., 2013). IKZF4, is a
critical mediator of Foxp3-dependent gene silencing in T cell
reguration (Treg), interacts directly with Foxp3 and is necessary
for gene silencing without affecting the expression of Foxp3
activated genes (Pan et al., 2009). IKZF4maybe another biological
candidate gene for vitiligo and influences the development of
vitiligo. Further fine mapping and function analysis required
to determine the causal variants within this locus for vitiligo.
Besides, studies have also found IKZF4 is associated with T1D
(Hakonarson et al., 2008) and alopecia areata (AA; Petukhova
et al., 2010). There are 25 SNPs in the region of IL2RA (encoding
the interleukin-2-receptor alpha chain) on chromosome 10p15.1,
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8 of which showed genome wide significance, SNPs rs706779
and rs7090530 had the strongest association with GV (Jin et al.,
2010a). Elevated serum interleukin-2-receptor levels indicate
T-cell activation in GV (Honda et al., 1997; Wang et al., 2009).
The variants of IL2RA have been shown to be associated with
T1D (Vella et al., 2005), RA (Hinks et al., 2009), and SLE (Carr
et al., 2009). Study identified a quantitative trait locus for vitiligo
age of onset, located near c6orf10-BTNL2 (rs7758128), a region
that is also associated with GV susceptibility (Jin et al., 2011).
BTNL2 encodes an immunoglobulin superfamily membrane
protein implicated in T-cell activation. Variants in BTNL2 may
play a role which involved in vitiligo susceptibility versus vitiligo
age of onset. The BTNL2 gene region has been associated
with susceptibility to many other autoimmune diseases, such
as T1D (He et al., 2009), RA (Cui et al., 2009), SLE (Orozco
et al., 2005), PS (Feng et al., 2009), and GD (Simmonds et al.,
2006).

CXCR5, CCR6, and SH2B3
CXCR5, CCR6, and SH2B3 encode chemokine or cytokine
receptors. Association analyses identified that rs638893 at
11q23.3 is associated with vitiligo in the Chinese Han population,
and rs638893 is located in an intergenic region between CXCR5
and DDX6 (Tang et al., 2013). CXCR5 encodes a multi-
pass membrane protein that belongs to the CXC chemokine
receptor family. This cytokine receptor binds to B-lymphocyte
chemoattractant (BLC), and is involved in B-cell migration into
B-cell follicles of spleen and Peyer patches. CXCR5 has also been
shown to have an important role in the pathogenesis of colorectal
cancer (CC) (Qi et al., 2014), SLE (Zhang et al., 2014), and
MS (Lill et al., 2013). At 6q27, GWAS of GV in the Chinese
populations identified rs6902119 in CCR6 with genome wide
significance (Quan et al., 2010). Another study showed that
the most significant association SNPs rs6902119 and rs2301436
in CCR6 were observed, SNPs rs6902119 and rs2301436 are
in moderate LD, and logistic regression analysis indicated that
association of GV with rs2301436 might be secondary to LD
with rs6902119 (Jin et al., 2010b). CCR6 encodes chemokine
receptor 6 and is favorably expressed by immature dendritic cells
and memory T cells (Schutyser et al., 2003). When binding to
its ligand (CCL20), CCR6 may result in the chemoattraction of
immune cells, which might have a role in skin and mucosal
surfaces under homeostatic and inflammatory conditions (Le
Borgne et al., 2006). CCR6 is also associated with inflammatory
bowel disease (IBD) (Barrett et al., 2008). The GWAS-MA
showed association with SNPs (nt 111708458-112906415) within
and near SH2B3, particularly rs3184504 and imputed SNP
rs4766578, located downstream, within ATXN2 (Jin et al., 2012a).
ATXN encodes Ataxin-2, and is causal for spinocerebellar ataxia
type 2. SH2B3 encodes a member of the SH2B adaptor family of
proteins, which are involved in a range of signaling activities by
growth factor and cytokine receptors. SH2B3 thus seems more
likely relevant to vitiligo susceptibility than ATXN2. SH2B3 is
also involved in the development regulation of both B and T
cells, and associated with some immune diseases, including T1D
(Devalliere and Charreau, 2011), RA (Coenen et al., 2009), and
lupus (Li et al., 2010).

Melanocyte Related Genes for Vitiligo
Vitiligo is one of the most common pigment disorders of
the skin and hair and results from a selective destruction
of melanocytes. Vitiligo patients have a progressive loss of
melanocytes, predominantly in areas of skin subject to physical
abrasion or at pressure points, leading to white patches appearing
on the body. In normal physiological circumstances, melanin
pigment is generated by the melanocytes and transferred to the
surrounding keratinocytes to produce skin complexion and hair
coloration (Smith and Sturm, 2010). GWASs for vitiligo have
also identified some susceptible genes which showed genome-
wide significant association level with the related function that
influence the activity of melanocyte.

ZMIZ1
ZMIZ1 locus at 10q22, encodes a protein related to protein
inhibitor of activated STAT (PIAS). PIAS3, a related member of
the PIAS protein family, can inhibit the transcriptional activity
of microphthalmia transcription factor (MITF), which has been
demonstrated to be a key regulator of melanocyte development,
function and survival (Garraway et al., 2005). Another study
confirmed ZMIZ1 as a novel susceptibility locus for vitiligo and
further suggested rs1408944 to be the putative causal variant that
potentially interrupts TF binding and thus the transcriptional
regulation of ZMIZ1 (Sun et al., 2014). In addition, ZMIZ1might
be associated with type II diabetes (T2D) (Matsuba et al., 2015),
CD (Yang et al., 2015), and IBD (Jakobsen et al., 2014).

PMEL
PMEL encodes a melanocyte-specific type I transmembrane
glycoprotein. The encoded protein is enriched in melanosomes,
which are the melanin-producing organelles in melanocytes,
and plays an essential role in the structural organization
of premelanosomes (McGlinchey et al., 2009). Skin biopsy
transcriptome analysis found that PMEL has a decreased
expression in vitiligo lesional skin compared to vitiligo
perilesional normal skin (Tang et al., 2013). In addition,
the antigen-specific CD8+ T cells exhibit reactivity to modified
PMEL peptide epitopes in HLA-A2-positive vitiligo patients
(Mandelcorn-Monson et al., 2003), which also supports
the notion that there is a cell-mediated immunopathologic
mechanism in vitiligo.

TYR
GWAS identifies two SNPs (rs1847134 and rs1393350) in
association with the TYR gene region which showed genome-
wide significance with vitiligo, and haplotype analysis reveals
a strong association with a block of six SNPs (rs1018528,
rs10765198, rs1847134, rs1393350, rs1126809, and rs1806319)
in tight LD (Jin et al., 2010a). TYR encodes tyrosinase, an
enzyme of the melanocyte that catalyzes the rate-limiting steps
of melanin biosynthesis and constitutes a major autoantigen in
GV (Rezaei et al., 2007). Next-generation DNA re-sequencing
identifies common variants of TYR and HLA-A that modulate
the risk of GV via antigen presentation (Jin et al., 2012b).
The biological interaction between HLA-A and TYR shows
an apparent inverse relationship between susceptibility to GV
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versus malignant melanoma (Spritz, 2010), suggesting that GV
may result from dysregulation of normal processes of immune
surveillance against melanoma.

MC1R
MC1R, encoding the receptor protein for melanocyte-stimulating
hormone (MSH), is a regulator of melanogenesis and minor
vitiligo autoantigen, associating with malignant melanoma and
with skin and hair color (Dessinioti et al., 2011). Expression
shows MC1R is marked significantly different between lesional
and non-lesional vitiligo skin (Kingo et al., 2007). The
frequency of fiveMC1R coding region SNPs: Arg67Gln (G200A),
Val92Met (G274A), Ile120Thr (T359C), Arg160Arg (C478A),
and Gln163Arg (A488G) in Korean vitiligo patients and normal
controls did not reach statistical significance (Na et al., 2003).
However, another study shows that the Arg160Trp allele of
MC1R gene may be able to protect against vitiligo (Szell
et al., 2008). Further study need to be conducted to confirm
this conclusion between vitiligo and MC1R coding region
SNPs.

RNASET2 and FGFR1OP
In the Chinese Han population, GWAS for vitiligo identifies a risk
locus at 6q27, which contains three genes: RNASET2, FGFR1OP
and CCR6. RNASET2 is potentially involved in tumorigenesis
and associated with human malignancies and chromosomal
rearrangement. Overexpression of RNASET2 hypersensitizes cells
to oxidative stress, thus promoting cell death during peroxide
exposure and stationary-phase onset (Thompson and Parker,
2009). Therefore, RNASET2 regulates the oxidative stress and
intervenes the initial pathogenic event in melanocyte destruction
in vitiligo. FGFR1OP encodes a largely hydrophilic centrosomal
protein that is required for anchoring microtubules to subcellular
structures. Loss of FGFR1OP causes apoptosis in the G1 phase
of the cell cycle, with accumulation of a 32-kDa p53 tumor
suppressor isoform and NOXA and FAS transcripts, suggesting
that FGFR1OP is necessary for cell-cycle progression and survival
(Acquaviva et al., 2009). Mutations in this gene not only associate
with vitiligo (Quan et al., 2010), but also are associated with CD
(Yang et al., 2014), GD (Chu et al., 2011).

OCA2 and HERC2
At 15q12–q13.1, GWAS-MA shows suggestive association of
SNPs spanning OCA2 upstream to within HERC2, especially
SNP rs12913832 and imputed SNP rs1129038 (Jin et al., 2012a).
OCA2 encode melanocyte antigens presented by HLA-A∗0215,
for vitiligo protection is associated with reduced functional
protein, and for susceptibility to vitiligo andmelanoma constitute
genetic opposites, perhaps modulating immune surveillance
for melanoma (Jin et al., 2012a). Mutations in OCA2 gene
associate with oculocutaneous albinism type II (Rimoldi
et al., 2014) and melanoma (Hawkes et al., 2013). HERC2
belongs to the HERC gene family that encodes a group of
unusually large proteins, which contain multiple structural
domains. Variants within HERC2 down-regulate transcription
of the OCA2 allele in cis (Jin et al., 2012a). Mutations in
HERC2 are associated with the development of angelman

syndrome (AS; Harlalka et al., 2013), global developmental delay
(GDD), and autismspectrum disorder (AD) (Puffenberger et al.,
2012).

Apoptotic and Cytotoxic Genes for
Vitiligo
Vitiligo is an acquired and progressive hypomelanotic disease
that manifests as circumscribed depigmented patches on the skin.
The interactions between melanocytes and other typical skin
cells, particularly keratinocytes, may be an interpretation for the
cause of vitiligo. Some genes have the role in gene repression,
apoptosis and cell survival, inflammation, and cytotoxic cells, its
possible involvement in the progression vitiligo.

RERE
RERE is the locus on chromosome 1p36.23, which encodes the
arginine–glutamic acid dipeptide repeats protein. The protein is
a transcriptional corepressor that is highly expressed in lymphoid
cells and is thought to regulate apoptosis (Wang and Tsai,
2008). There are 40 SNPs in RERE were identified as having
an association with GV especially rs301819 showed genome-
wide significance, the most strongly associated SNPs in the RERE
region were in tight LD; no haplotype showed a significantly
stronger association than any component SNP (Jin et al., 2012a).
Another SNP rs4908760 in RERE is the strongest associated SNP
with genome-wide significance in the GWAS study (Jin et al.,
2010a).

CASP7
At 10q25.3, GWAS-MA for vitiligo shows suggestive association
of SNPs spanning CASP7, particularly rs3814231, which is
confirmed by the replication and meta-analysis study (Jin et al.,
2012a). CASP7 encodes a member of the cysteine-aspartic acid
protease (caspase) family, and sequential activation of caspases
plays a central role in the execution-phase of cell apoptosis and
inflammation (Lamkanfi and Kanneganti, 2010). CASP7 also is
associated with RA (Garcia-Lozano et al., 2007), and may be a
candidate gene for T1D (Babu et al., 2003).

GZMB
Genome-wide association studies in European-derived whites
have demonstrated genetic association between vitiligo and
GZMB (Jin et al., 2012a; Jin et al., 2010a). GZMB is a
caspase much alike serine protease that mediates two processes:
immune-induced target-cell apoptosis mediated by cytotoxic
T cells (CTLs), and natural killer cells and activation-induced
cell death or type 2 helper T cells, which terminates the
immune response (Trapani and Sutton, 2003; Devadas et al.,
2006). Next-generation DNA re-sequencing has identified a
direct causal role for the GZMB rs8192917-C-rs11539752-
C haplotype (55R-94A) in the pathogenesis of GV (Ferrara
et al., 2013). GZMB is only genetically associated with juvenile
idiopathic arthritis (JIA; Donn et al., 2008) and Behcet’s disease
(BD; Kucuksezer et al., 2009), which suggests the possibility
that GZMB may be relatively specific for melanocyte-directed
autoimmune susceptibility.
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Susceptibility Loci with Unknown
Functions for Vitiligo
There are some vitiligo susceptible genes identified by GWAS
and reach at the genome-wide significance level, but the function
of these genes in the pathogenesis and development of vitiligo is
still unclear.

TOB2
At 22q13.2, the GWAS-MA showed association with SNPs in
a broad region (nt 41707054-42062822), particularly rs79008,
upstream of TOB2, and several imputed SNPs, including
rs4822024, between ZC3H7B and TEF (Jin et al., 2012a). TOB2
locus on 22q13.2, encodes a regulator of cell cycle progression
involved in T cell tolerance (Jia and Meng, 2007). However,
the assignment of TOB2 as causal remains uncertain in the
pathogenesis of vitiligo.

SMOC2
Genome-wide association studies in an isolated European
population identified SMOC2 as a risk locus for GV (Birlea et al.,
2010). However, another study shows that the variant rs13208776
in SMOC2 gene does not play amajor role in increasing the risk of
vitiligo in Jordanian Arab patients (Alkhateeb et al., 2010), maybe
due to the different genetic background in these two populations.
In the skin, SMOC2 is mainly present in the basal levels of
the epidermis, and SMOC2-stimulated attachment of primary
keratinocytes in culture (Maier et al., 2008). The study has also
found that SMOC2 may play a role in autoimmune thyroid
disease (AITD) susceptibility as a dominant polymorphism
(Alkhateeb et al., 2013).

KIAA1005
KIAA1005, also known as retinitis pigmentosa GTPase regulator-
interacting protein 1-like (RPGRIP1L) gene, encodes a protein
that can localize to the basal body-centrosome complex or to
primary cilia and centrosomes in ciliated cells. In KIAA1005, the
genotype and allele frequencies of 3854 G > A (1264 Asp > Asn)
in vitiligo patients are significantly different compared to healthy
controls. The GG frequency is lower and AA frequency is higher
in vitiligo, suggesting the A allele at the KIAA1005 G3854A
may increase susceptibility to vitiligo (Cheong et al., 2013).
Multiple variants of the KIAA1005 gene have also been associated
with certain clinical manifestations, particularly ciliopathies as
in DNAH5 with neurological, renal and ocular manifestations
(Delous et al., 2007).

SLC29A3 and CDH23
GWAS has revealed rs1417210 at 10q22.1 to have a strong
association with vitiligo (Tang et al., 2013). This SNP is located
in an LD block that contains SLC29A3 and CDH23. SLC29A3
encodes a nucleoside transporter. The encoded protein plays
a role in cellular uptake of nucleosides, nucleobases, and
their related correspondents. Mutations in this gene have been
associatedwith H syndrome (Molho-Pessach et al., 2008).CDH23
is a member of the cadherin superfamily, whose genes encode
calcium dependent cell-cell adhesion glycoproteins. The encoded
protein is thought to be involved in stereocilia organization and

hair bundle formation. Whole-exome sequencing (WES) has
identified that CDH23 mutations cause hearing loss in Koreans
families (Woo et al., 2014).

LPP, DDX6, and C1QTNF6
The LPP gene locus on 3q28, encodes a member of a subfamily
of LIM domain proteins that are characterized by a N-terminal
proline-rich region and three C-terminal LIM domains. LPP
has also been associated with celiac disease and RA (Coenen
et al., 2009). Rs638893 located in an intergenic region between
DDX6 and CXCR5 is associated with vitiligo (Tang et al., 2013).
DDX6 encodes a member of the DEAD box protein family,
which is a RNA helicase found in P-bodies and stress granules,
and functions in translation suppression and mRNA degradation
(Weston and Sommerville, 2006). Rs229527 in C1QTNF6 has
shown to have an association with GV (Jin et al., 2010a).
C1QTNF6 denotes the C1q and tumor necrosis factor–related
protein 6 gene. C1QTNF6-RAC2 at 22q12.3-13.1 has reached
a genome-wide significant association is a novel susceptibility
loci for GD (Zhao et al., 2013), and GWAS-MA also identifies
C1QTNF6 as one of risk loci for T1D (Cooper et al., 2008).

GENES AND LOCUS INTERACTIONS IN
SUSCEPTIBILITY TO VITILIGO

In general, genes and locus only explain partial variation
of heritability (Manolio et al., 2009), gene–gene (or genetic
variants) interactions are strongly believed to contribute to the
genetic risk of common diseases (Cordell, 2009). Transmission
disequilibrium and family based association statistical tests
found the SNP markers in regions 7p13, 7q11, and 9q22 were
significantly associated with GV, tagging SNPs for these regions
represented by rs6960920, rs734930, and rs4744411, respectively
(Spritz et al., 2004). The investigators examined the potential
genetic interactions for these independently identified loci using
two-way tests (and three-way tests in the context of the previously
identified NLRP1 gene tagged by the rs6502867). Notably, all
three SNPs showed significant interaction with the NLRP1 gene
in predicting the GV phenotype (Jin et al., 2010c). The pairwise
interaction analysis between 6q27, 10q22 and the two MHC
SNPs (rs11966200 and rs9468925) were performed in the Chinese
Han population, but no significant genetic interaction (P > 0.05
after correction for multiple testing) was identified (Quan et al.,
2010).

It is observed that the autoimmunity feature of vitiligo is
supported through the significant linkage to the MHC region on
6p21-p22 and evidence provided for the association of HLA-DR
with vitiligo. The epistatic interaction between rs2269577 (XBP1)
andHLADRB1∗07 was tested by using logistic regression analysis
and found that the full model with both the main and interactive
effects was better than the model with only the main effect to
fit the data (Ren et al., 2009). Stratified association analysis of
rs2269577 byHLA-DRB1∗07 allele has shown that the association
at rs2269577 is significant in both the patients carrying and not
carrying the -DRB1∗07 allele. However, the association seems
to be stronger in patients carrying the HLA-DRB1∗07 allele
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(Ren et al., 2009). XBP1 as one of biological candidate genes for
vitiligo may be due to its plausible role in the development of the
disease through its interaction with HLA-DR.

GWAS identifies RNASET2 as a susceptible gene to vitiligo in
the Chinese Han population (Quan et al., 2010), but the function
of RNASET2 in vitiligo pathogenesis or inmelanocyte apoptosis is
unknown. In vitro analyses have indicated that overexpression of
RNASET2 is inducible in cultured primary human melanocytes
and keratinocytes through stressful conditions, exposure to
ultraviolet irradiation, hydrogen peroxide, and inflammatory
factors, respectively, and lead to increased cell apoptosis
via the tumor necrosis factor receptor-associated factor 2
(TRAF2)-caspases pathway through the physical interaction of
RNASET2 with TRAF2 (Wang et al., 2014). Hence, RNASET2
may contribute to vitiligo pathogenesis by inhibiting TRAF2
expression.

CONCLUSION AND PROSPECTION

In the past five years, GWASs have contributed tremendously
to the identification of key loci that were associated with the
risk of developing vitiligo. These genes may provide novel
therapeutic and prophylactic targets for new interventional
approaches to treat and prevent vitiligo. Developments in this
area will be exciting and influence the therapeutic approaches
for the suppression of vitiligo in the future. We summarized
and evaluated the importance of these loci in their respective
molecular signaling pathways, and suggested new etiologic clues
to vitiligo development. Considering that most of these genetic
associations are restricted to moderate effects, large sample
size studies are required in future investigations in order for

these subtle variations to be detected. With the increasing
number of GWASs being conducted, it is desirable to combine
these findings across these studies to improve the statistical
power. Meta-analysis of multiple GWASs improves the power
to detect more associations, and to investigate the heterogeneity
or consistency of these associations across different datasets
and study populations. Beyond gene-association approaches,
functional and gene-targeted assays, whole exome sequencing
are required to identify the causal variants and understand their
biological function.
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