1,958 research outputs found

    Approvals and Timing of New Formulations of Novel Drugs Approved by the US Food and Drug Administration Between 1995 and 2010 and Followed Through 2021

    Get PDF
    New formulations of prescription drugs can improve convenience and tolerability for patients, but they also constitute manufacturer strategies to extend brand-name drug market exclusivity periods. We examined whether new formulations of brand-name novel drugs were associated with novel drugs’ sales and/or therapeutic value, as well as characterized first new formulations’ approval timing relative to the novel drug’s generic approval. We found that manufacturers are several times more likely to secure Food and Drug Administration approval for a new formulation for existing drugs that have reached blockbuster status. (Blockbuster drugs are the most profitable drugs with more than $1 billion in annual sales, but are not necessarily the most innovative or clinically meaningful drugs.) Manufacturers also dramatically reduced pursuing approval for new formulations once their drugs began to face generic competition. In contrast, companies did not develop new formulations for drugs that were considered the most therapeutically valuable, innovative, or clinically useful. Thus, while the modified formulations may not be innovative or clinically meaningful themselves, drug manufacturers frequently do not alter drugs that are particularly valuable and innovative to begin with. Our study shows that drugs’ revenue, as opposed to patient benefit, is the clear driver for reformulating drugs

    Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations.

    Get PDF
    BACKGROUND -Dysregulation of voltage-gated cardiac Na(+) channels (NaV1.5) by inherited mutations, disease-linked remodeling, and drugs causes arrhythmias. The molecular mechanisms whereby the NaV1.5 voltage-sensing domains (VSDs) are perturbed to pathologically or therapeutically modulate Na(+) current (INa) have not been specified. Our aim was to correlate INa kinetics with conformational changes within the four (DI-DIV) VSDs to define molecular mechanisms of NaV1.5 modulation. METHOD AND RESULTS -Four NaV1.5 constructs were created to track the voltage-dependent kinetics of conformational changes within each VSD, using voltage-clamp fluorometry (VCF). Each VSD displayed unique kinetics, consistent with distinct roles in determining INa. In particular, DIII-VSD deactivation kinetics were modulated by depolarizing pulses with durations in the intermediate time domain that modulates late INa. We then used the DII-VSD construct to probe the molecular pathology of two Brugada Syndrome (BrS) mutations (A735V and G752R). A735V shifted DII-VSD voltage-dependence to depolarized potentials, while G752R significantly slowed DII-VSD kinetics. Both mutations slowed INa activation, even though DII-VSD activation occurred at higher potentials (A735V) or at later times (G752R) than ionic current activation, indicating that the DII-VSD allosterically regulates the rate of INa activation and myocyte excitability. CONCLUSIONS -Our results reveal novel mechanisms whereby the NaV1.5 VSDs regulate its activation and inactivation. The ability to distinguish distinct molecular mechanisms of proximal BrS mutations demonstrates the potential of these methods to reveal how inherited mutations, post-translational modifications and anti-arrhythmic drugs alter NaV1.5 at the molecular level

    1-(5-Carboxy­pent­yl)-2,3,3-trimethyl-3H-indol-1-ium bromide monohydrate

    Get PDF
    In the title compound, C17H24NO2 +·Br−·H2O, the pentyl group chain in the cation extends nearly perpendicular [N—C—C—C = −64.4 (3)°] to the mean plane of the indole ring with the carboxyl end group twisted such that the dihedral angle between the mean planes of the indole and carb­oxy groups measures 43.2 (4)°. Both ions in the salt form inter­molecular hydrogen bonds (O—H⋯Br and O—H⋯O) with the water mol­ecule. As a result of the Br⋯H—O—H⋯Br inter­actions, a zigzag chain is formed in the c-axis direction. The crystal packing is influenced by the collective action of the O—H⋯O and O—H⋯Br inter­molecular inter­actions as well as π–π stacking inter­molecular inter­actions between adjacent benzyl rings of the indole group [centroid–centroid distance = 3.721 (13) Å] and inter­molecular C—H⋯π inter­actions between a methyl hydrogen and the benzyl ring of the indole group. The O—H⋯Br inter­actions form a distorted tetra­hedral array about the central Br atom. A MOPAC AM1 calculation provides support to these observations

    Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis

    Get PDF
    Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis. We discuss a genome-wide approach based on graph theory and Gene Ontology vocabulary for the functional characterization of common fragile sites and for the identification of genes that contribute to tumour cell biology. CFS were assembled in a network based on a simple measure of correlation among common fragile site patterns of expression. By applying robust measurements to capture in quantitative terms the non triviality of the network, we identified several topological features clearly indicating departure from the Erdos-Renyi random graph model. The most important outcome was the presence of an unexpected large connected component far below the percolation threshold. Most of the best characterized common fragile sites belonged to this connected component. By filtering this connected component with Gene Ontology, statistically significant shared functional features were detected. Common fragile sites were found to be enriched for genes associated to the immune response and to mechanisms involved in tumour progression such as extracellular space remodeling and angiogenesis. Our results support the hypothesis that fragile sites serve a function; we propose that fragility is linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice

    Regulation of Na(+) channel inactivation by the DIII and DIV voltage-sensing domains.

    Get PDF
    Functional eukaryotic voltage-gated Na(+) (NaV) channels comprise four domains (DI-DIV), each containing six membrane-spanning segments (S1-S6). Voltage sensing is accomplished by the first four membrane-spanning segments (S1-S4), which together form a voltage-sensing domain (VSD). A critical NaV channel gating process, inactivation, has previously been linked to activation of the VSDs in DIII and DIV. Here, we probe this interaction by using voltage-clamp fluorometry to observe VSD kinetics in the presence of mutations at locations that have been shown to impair NaV channel inactivation. These locations include the DIII-DIV linker, the DIII S4-S5 linker, and the DIV S4-S5 linker. Our results show that, within the 10-ms timeframe of fast inactivation, the DIV-VSD is the primary regulator of inactivation. However, after longer 100-ms pulses, the DIII-DIV linker slows DIII-VSD deactivation, and the rate of DIII deactivation correlates strongly with the rate of recovery from inactivation. Our results imply that, over the course of an action potential, DIV-VSDs regulate the onset of fast inactivation while DIII-VSDs determine its recovery

    Infection with Mers-Cov Causes Lethal Pneumonia in the Common Marmoset

    Get PDF
    The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies

    A Randomized Multicentre Phase II Trial Comparing Adjuvant Therapy in Patients with Interferon Alpha-2b and 5-FU Alone or in Combination with Either External Radiation Treatment and Cisplatin (CapRI) or Radiation alone regarding Event-Free Survival – CapRI-2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 5-year survival of patients with resected pancreatic adenocarcinoma is still unsatisfying. The ESPAC-1 and the CONKO 001 trial proofed that adjuvant chemotherapy improves 5-year survival significantly from approximately 14% to 21%. In parallel, investigators from the Virginia Mason Clinic reported a 5-year survival rate of 55% in a phase II trial evaluating a combination of adjuvant chemotherapy, immunotherapy and external beam radiation (CapRI-scheme). Two other groups confirmed in phase II trials these results to a certain extent. However, these groups reported severe gastrointestinal toxicity (up to 93% grade 3 or 4 toxicity). In a randomized controlled phase III trial, called CapRI, 110 patients were enrolled from 2004 to 2007 in Germany and Italy to check for reproducibility. Interestingly, much less gastrointestinal toxicity was observed. However, dose-reduction due to haematological side effects had to be performed in nearly all patients. First clinical results are expected for the end of 2009.</p> <p>Methods/Design</p> <p>CapRI-2 is an open, controlled, prospective, randomized, multicentre phase II trial with three parallel arms. A de-escalation of the CapRI-scheme will be tested in two different modifications. Patients in study arm A will be treated as outpatients with the complete CapRI-scheme consisting of cisplatin, Interferon alpha-2b and external beam radiation and three cycles of 5-fluorouracil continuous infusion. In study arm B the first de-escalation will be realised by omitting cisplatin. Next, patients in study arm C will additionally not receive external beam radiation. A total of 135 patients with pathologically confirmed R0 or R1 resected pancreatic adenocarcinoma are planned to be enrolled. Primary endpoint is the comparison of the treatment groups with respect to six-month event-free-survival. An event is defined as grade 3 or grade 4 toxicity, objective tumour recurrence, or death.</p> <p>Discussion</p> <p>The aim of this clinical trial is to evaluate de-escalation of the CapRI-scheme. It is hypothesised that removal of cisplatin and radiotherapy will have no significant effect or only a minor impact on the clinical response but result in substantially lower toxicity.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN79802092</p
    corecore