1,518 research outputs found
Coherent Charge Transport in Metallic Proximity Structures
We develop a detailed microscopic analysis of electron transport in normal
diffusive conductors in the presence of proximity induced superconducting
correlation. We calculated the linear conductance of the system, the profile of
the electric field and the densities of states. In the case of transparent
metallic boundaries the temperature dependent conductance has a non-monotoneous
``reentrant'' structure. We argue that this behavior is due to nonequilibrium
effects occuring in the normal metal in the presence of both superconducting
correlations and the electric field there. Low transparent tunnel barriers
suppress the nonequilibrium effects and destroy the reentrant behavior of the
conductance. If the wire contains a loop, the conductance shows Aharonov-Bohm
oscillations with the period as a function of the magnetic flux
inside the loop. The amplitude of these oscillations also demonstrates
the reentrant behavior vanishing at and decaying as at relatively
large temperatures. The latter behavior is due to low energy correlated
electrons which penetrate deep into the normal metal and ``feel'' the effect of
the magnetic flux . We point out that the density of states and thus the
``strengh'' of the proximity effect can be tuned by the value of the flux
inside the loop. Our results are fully consistent with recent experimental
findings.Comment: 16 pages RevTeX, 23 Postscript figures, submitted to Phys. Rev.
Bandgap properties of two-dimensional low-index photonic crystals
We study the bandgap properties of two-dimensional photonic crystals created
by a lattice of rods or holes conformed in a symmetric or asymmetric triangular
structure. Using the plane-wave analysis, we calculate a minimum value of the
refractive index contrast for opening both partial and full two-dimensional
spectral gaps for both TM and TE polarized waves. We also analyze the effect of
ellipticity of rods and holes and their orientation on the threshold value and
the relative size of the bandgap.Comment: 5 pages, 6 figures, App. Phys. B. styl
Quantum superconductor-metal transition
We consider a system of superconducting grains embedded in a normal metal. At
zero temperature this system exhibits a quantum superconductor-normal metal
phase transition. This transition can take place at arbitrarily large
conductance of the normal metal.Comment: 13 pages, 1 figure include
Microscopic nonequilibrium theory of double-barrier Josephson junctions
We study nonequilibrium charge transport in a double-barrier Josephson
junction, including nonstationary phenomena, using the time-dependent
quasiclassical Keldysh Green's function formalism. We supplement the kinetic
equations by appropriate time-dependent boundary conditions and solve the
time-dependent problem in a number of regimes. From the solutions,
current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and
how the subgap conductance behaves as function of junction parameters. A
time-dependent nonequilibrium contribution to the distribution function is
found to cause a non-zero averaged supercurrent even in the presence of an
applied voltage. Energy relaxation due to inelastic scattering in the
interlayer has a prominent role in determining the transport properties of
double-barrier junctions. Actual inelastic scattering parameters are derived
from experiments. It is shown as an application of the microscopic model, how
the nature of the intrinsic shunt in double-barrier junctions can be explained
in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.
Examining determinants of geographic variation in colorectal cancer mortality in North Carolina: A spatial analysis approach
Purpose: A recent study using national data from 2000 to 2009 identified colorectal cancer (CRC) mortality “hotspots” in 11 counties of North Carolina (NC). In this study, we used more recent, state-specific data to investigate the county-level determinants of geographic variation in NC through a geospatial analytic approach. Method: Using NC CRC mortality data from 2003 to 2013, we first conducted clustering analysis to confirm spatial dependence. Spatial economic models were then used to incorporate spatial structure to estimate the association between determinants and CRC mortality. We included county-level data on socio-demographic characteristics, access and quality of healthcare, behavioral risk factors (CRC screening, obesity, and cigarette smoking), and urbanicity. Due to correlation among screening, obesity and quality of healthcare, we combined these factors to form a cumulative risk group variable in the analysis. Results: We confirmed the existence of spatial dependence and identified clusters of elevated CRC mortality rates in NC counties. Using a spatial lag model, we found significant interaction effect between CRC risk groups and socioeconomic deprivation. Higher CRC mortality rates were also associated with rural counties with large towns compared to urban counties. Conclusion: Our findings depicted a spatial diffusion process of CRC mortality rates across NC counties, demonstrated intertwined effects between SES deprivation and behavioral risks in shaping CRC mortality at area-level, and identified counties with high CRC mortality that were also deprived in multiple factors. These results suggest interventions to reduce geographic variation in CRC mortality should develop multifaceted strategies and work through shared resources in neighboring areas
Quantum interference and the formation of the proximity effect in chaotic normal-metal/superconducting structures
We discuss a number of basic physical mechanisms relevant to the formation of
the proximity effect in superconductor/normal metal (SN) systems. Specifically,
we review why the proximity effect sharply discriminates between systems with
integrable and chaotic dynamics, respectively, and how this feature can be
incorporated into theories of SN systems. Turning to less well investigated
terrain, we discuss the impact of quantum diffractive scattering on the
structure of the density of states in the normal region. We consider ballistic
systems weakly disordered by pointlike impurities as a test case and
demonstrate that diffractive processes akin to normal metal weak localization
lead to the formation of a hard spectral gap -- a hallmark of SN systems with
chaotic dynamics. Turning to the more difficult case of clean systems with
chaotic boundary scattering, we argue that semiclassical approaches, based on
classifications in terms of classical trajectories, cannot explain the gap
phenomenon. Employing an alternative formalism based on elements of
quasiclassics and the ballistic -model, we demonstrate that the inverse
of the so-called Ehrenfest time is the relevant energy scale in this context.
We discuss some fundamental difficulties related to the formulation of low
energy theories of mesoscopic chaotic systems in general and how they prevent
us from analysing the gap structure in a rigorous manner. Given these
difficulties, we argue that the proximity effect represents a basic and
challenging test phenomenon for theories of quantum chaotic systems.Comment: 21 pages (two-column), 6 figures; references adde
Deactivation study of the hydrodeoxygenation of p-methylguaiacol over silica supported rhodium and platinum catalysts
Hydrodeoxygenation of para-methylguaiacol using silica supported Rh or Pt catalysts was investigated using a fixed-bed reactor at 300 °C, under 4 barg hydrogen and a WHSV of 2.5 h−1. The activity, selectivity and deactivation of the catalysts were examined in relation to time on stream. Three catalysts were tested: 2.5% Rh/silica supplied by Johnson Matthey (JM), 2.5% Rh/silica and 1.55% Pt/silica both prepared in-house. The Rh/silica (JM) showed the best stability with steady-state reached after 6 h on stream and a constant activity over 3 days of reaction. In contrast the other two catalysts did not reach steady state within the timeframe of the tests, with continuous deactivation over the time on stream. Nevertheless higher coking was observed on the Rh/silica (JM) catalyst, while all three catalysts showed evidence of sintering. The Pt catalyst (A) showed higher selectivity for the production of 4-methylcatechol while the Rh catalysts were more selective toward the cresols. In all cases, complete hydrodeoxygenation of the methylguaiacol to methylcyclohexane was not observed
Proximity-induced transport in hybrid mesoscopic normal-superconducting metal structures
Using an approach based on quasiclassical Green's functions we present a
theoretical study of transport in mesoscopic S/N structures in the diffusive
limit. The subgap conductance in S/N structures with barriers (zero bias and
finite bias anomalies) are discused. We also analyse the temperature dependence
of the conductance variation for a Andreev interferometer. We
show that besides the well know low temperature maximum a second maximum near
may appear. We present the results of studies on the Josephson effect in
4 terminal S/N/S contacts and on the possible sign reversal of the Josephson
critical current.Comment: 8 pages, 5 figures, with added refrence
Insulating and Conducting Phases of RbC60
Optical measurements were performed on thin films of RbC,
identified by X-ray diffraction as mostly material. The samples were
subjected to various heat treatments, including quenching and slow cooling from
400K. The dramatic increase in the transmission of the quenched samples, and
the relaxation towards the transmission observed in slow cooled samples
provides direct evidence for the existence of a metastable insulating phase.
Slow cooling results in a phase transition between two electrically conducting
phases.Comment: Minor revisions. Submitted to PRB, RevTeX 3.0 file, 2 postscript
figures included, ir_dop
- …