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Microscopic nonequilibrium theory of double-barrier Josephson junctions
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We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary
phenomena, using the time-dependent quasiclassical Keldysh Green’s function formalism. We supplement the
kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in
a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and how the subgap conductance
behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution
function is found to cause a nonzero averaged supercurrent even in the presence of an applied voltage. Energy
relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport prop-
erties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is
shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier
junctions can be explained in terms of energy relaxation and the opening of Andreev channels.
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I. INTRODUCTION

The Josephson effect is a hallmark of superconductivity
is also the basis of a wide range of applications such
metrology and sensing and classical and quantum logic
cuits. Moreover, a detailed study of the Josephson effec
mesoscopic devices provides deep insight into the me
nism of the formation and transport of superconducting c
relations in weak links and at interfaces. It is known from t
microscopic theory of superconductivity that the superc
rent across weak links is carried by Andreev bound sta
~ABS’s!. The supercurrent depends both on the ABS ene
levels and on their population, i.e. on the quasiparticle d
tribution function over energy. This provides the possibil
of an external control of current. It was realized a long tim
ago that deviations from equilibrium may strongly modi
the transport properties of weak links and Josephson tu
junctions. A review of early work on various aspects of no
equilibrium superconductivity was given by the papers
Refs. 1 and 2 and the one by Kopnin.3 Two main topics in
this field are the effects arising from a charge imbalanc4,5

and effects from a stimulation of superconductivity by ext
nal fields.6

The recent progress in the fabrication of superconduc
structures of submicrometer size has stimulated a rene
interest in nonequilibrium effects in Josephson junctio
The effect of supercurrent control by current injection fro
additional terminals was first studied theoretically7–9 and
demonstrated experimentally10,11 for a diffusive super-
conductor–normal metal–superconductor~SNS! junction. In
this case, even a sign reversal of the critical current
possible.8,11 Additionally, the control of the supercurrent b
0163-1829/2003/68~22!/224513~16!/$20.00 68 2245
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current injection was studied in structures with ballis
transport.12–17

Deviations from equilibrium are also reflected in the qu
siparticle current. The dissipative current component in S
junctions arises from multiple Andreev reflections~MAR! of
quasiparticles. A quasiparticle gainseV in energy each time
it traverses the interlayer, resulting in a strong nonequi
rium distribution function at subgap energies, as observed
Pierreet al.18 In point contacts, the microcscopic descriptio
of the current in terms of MAR was derived by Averin an
Bardas,19 based on a scattering matrix approach, while C
vas et al.20 described MAR in quantum point contacts b
means of a tunnel Hamiltonian approach. For the case o
SNS junction with a long interlayer as compared to the
herence length~incoherent regime!, the current due to MAR
was calculated by Bezuglyiet al.21

When tunnel barriers (I ) are introduced at the SN inter
faces, the quasiparticles in short junctions can undergo tr
mission resonances, resulting in a dephasing of the elect
and holes. However, it was shown in Ref. 22 that for a bro
transmission resonance in a superconductor-insulator-no
metal-insulator-superconductor~SINIS! junction, the reso-
nance energy width being larger than the ABS, coher
transport occurs, and a microscopic model was given
terms of MAR, integrated by a universal distribution
transparency eigenvalues.23 It is shown by Navehet al.24 that
the same distribution function also describes electrical tra
port in high critical current density junctions. In order
model the nonstationary and nonequilibrium transp
through SINIS structures in the general case, a full Keldy
Green’s function approach is required. The derivation of t
microscopic model as well as its solutions is the scope of
article.

SINIS junctions are promising basic elements for appli
©2003 The American Physical Society13-1
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tions in classical computing and metrology, because they
intrinsically shunted. Both rapid single flux quantum logic25

and digital voltage standards are electronic applications
which the use of these structures seems promising.26 How-
ever, important features of theIV characterstics are not su
ficiently understood yet, such as the magnitude of the sub
conductance and the nature of the intrinsic shunt of th
junctions. The experimental observation that the hysteres
the IV curves depends nonmonotonically on the critical c
rent density has not yet been explained.26,27 Thus, under-
standing the transport properties on a microscopic level
be valuable for electronic applications. Here, these trans
phenomena will be clarified in terms of the opening of A
dreev channels and inelastic scattering in the interlayer.

Earlier work concentrated on modeling theIV character-
istics of double-barrier junctions in specific limiting case
When one of the electrodes is replaced by a normal me
the time dependencies simplify considerably, since forma
one can then put the voltage to zero in the supercondu
The IV characteristics of superconductor-insulator-norm
metal-insulator-normal metal~SININ! junctions were studied
by means of the quasiclassical Green’s functions techn
by Zaitsev,28 Volkov et al.,29 and Zaitsevet al.30 Lempitskii31

studied nonequilibrium effects on the nonstationary prop
ties of long SNS junctions in the absence of interface barr
and Kadin32 used a time-dependent Ginzburg-Landau
proach, valid only in a narrow temperature range. Anot
limiting case is the double-barrier structure with a long
terlayer as compared to the coherence length. The deriva
of time-dependent transport properties in this case simpl
since a decoupling of the electrodes is possible, as, e.g., s
ied by Volkov and Klapwijk33 and Bezuglyiet al.21

In this paper, a microscopic quasiclassical theory will
given for a double-barrier Josephson junction with two
perconducting electrodes and a short interlayer. The in
layer will be assumed to be a diffusive normal metal, bu
will be indicated how the model can be extended in
straightforward way to incorporate a superconducting gap
the interlayer. The Keldysh formalism is introduced in S
II. The spectral supercurrent density is obtained, and ap
priate time-dependent boundary conditions are derived
supplement the kinetic equations for the energy distribut
functions in the interlayer. The technical scheme for solv
the time-dependent Keldysh-Usadel equation may have
plications beyond the present paper. Solutions are prese
in Sec. III for the adiabatic limit ofeV!DS . As an intrigu-
ing nonequilibrium effect in a double-barrier Josephson ju
tion, we show that even at finite voltage bias, there can b
nonzero averaged supercurrent. Energy relaxation due to
elastic scattering is a phenomenon that strongly modifies
energy distribution function. It will be shown in Sec. IV th
inelastic scattering is important in a double-barrier Joseph
junction and how this effect can be incorporated into
microscopic model. As an application of the microscop
model, the nature of the intrinsic shunt of double-barr
junctions will be discussed in Sec. V. The observed n
monotonic hysteresis vs critical current density depende
as well as the actual values, are explained.
22451
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II. KELDYSH FORMULATION

The Matsubara Green’s function technique can be app
to a many-body system in equilibrium, from which th
energy-dependent properties of the system can be derive
addition to obtaining spectral quantities, we need to kn
how the states are populated under nonequilibrium con
tions. For this purpose Keldysh34 proposed a set of propaga
tors along a contour in the complex-time plane that allo
one to describe the real-time evolution of a system outs
equilibrium and at a finite temperature. The review of Ra
mer and Smith35 describes the use of the Keldysh techniq
in the transport theory of metals. The Keldysh method
introduced specifically for nonequilibrium superconductiv
in Refs. 36–39.

The quasiclassical approximation is used, in the sense
rapid oscillations of the wave functions on the scale of
Fermi wavelength are averaged out. Furthermore, in this
per it is assumed that the transport through the interlaye
diffusive, the thickness being much larger than the ela
scattering length, so that the Usadel equation can be us

A. Time-dependent Usadel equation

A compact notation of the equations for the quasiclass
Green’s functions becomes possible by introducing
Green’s function in Keldysh3 Nambu space:

Ğ5S ĜR ĜK

0 ĜA D . ~1!

The quasiclassical Green’s functionĞ is a function of two
times, t and t8, and the time-dependent Usadel equation
the absence of a vector potential reads38

2D\¹~Ğ+¹Ğ!1 t̆3\
]Ğ

]t
1

]Ğ

]t8
\t̆32 i D̆~ t !Ğ1Ği D̆~ t8!

52 i ~S̆ inel+Ğ2Ğ+S̆ inel!, ~2!

where

t̆35S t̂3 0

0 t̂3
D ,D̆5S D̂ 0

0 D̂
D ,

D̂5S 0 D

D* 0D ,S̆ inel5S Ŝ inel 0

0 Ŝ inel
D . ~3!

D is the diffusion constant,S̆ inel the self-energy with
retarded, advanced, and Keldysh components, *
notes the complex conjugate and+ denotes a convolution
over the internal time coordinates, e.g.,S̆ inel(t,t8)+Ğ
5*dt1S̆ inel(t,t1)Ğ(t1 ,t8). The function Ğ is normalized
as Ğ+Ğ51̆. The expression for the current in the Keldys
formalism is

I 5
1

2eRN
E dETr@ t̂3~ĜR¹ĜK1ĜK¹ĜA!#. ~4!
3-2
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The Green’s functions can be transformed to ener
frequency space (E,v) by Fourier transforming the func
tions Ğ(t2t8,(t1t8)/2):

Ğ~E,v!5E ĞS t2t8,
t1t8

2 D
3e2 iE(t2t8)/\eiv(t1t8)/2\d~ t2t8!d~ t1t8!/2.

~5!

This transformation is analogous to the Wigner represe
tion of the full double-coordinateGreen’s function. Spectra
quantities that only depend on energy and not on freque
after Fourier transforming, such as the equilibrium Gree
functions in the electrodes, only depend on the time diff
ence before Fourier transforming. Each term in Eq.~2! can
be transformed to (E,v) space. Hence, the Usadel equati
can be rewritten in (E,v) space as

2D\¹~Ğ+¹Ğ!1 iE@ t̆3 ,+Ğ#1 i
v

2
$t̆3 ,+Ğ%

52 i ~S̆ inel+Ğ2Ğ+S̆ inel!, ~6!

whereD̂(t)50 is taken for simplicity.@ t̆3,Ğ# is the commu-
tator of t̆3, and Ğ, and $t̆3,Ğ% is the anticommutator. A
decomposition of the Green’s functions in Fourier harmon
can formally be introduced as

Ğ~E,v!5 (
n52`

`

Ğn~E!d~v2v0!, ~7!

whereĞn(E)5Ğ(E,nv0), as was done, for example in Re
20. The generation of higher order Fourier harmonics i
manifestation of the nonlinearity of the device, prevale
e.g., in Eq.~6!.

B. Retarded and advanced propagators

Equation ~6! consists of an Usadel equation for the r
tarded Green’s function, the advanced Green’s function,
an equation containing the Keldysh Green’s function. T
Usadel equation for the retarded Green’s functionĜR in the
interlayer~taking the limit of D̂50 and zero inelastic scat
tering, Ŝ inel50) in Fourier components reads

2D\¹~ĜR+¹ĜR!n1 inv0/2$t̂3 ,Ĝn
R~E!%1 iE@ t̂3 ,Ĝn

R~E!#

50, ~8!

where the indexn denotes thenth harmonic. The self-energ
terms in Eq.~6! can effectively be represented by a chara
teristic inelastic scattering timet in , as derived by Larkin and
Ovchinnikov.40 Taking the inelastic scattering to be time i
dependent is of course a rough approximation, but suffi
for the purposes of this paper. The self-energy terms h
been neglected in Eq.~8!, which is justified as long as
\/t in!kBT. Note that Eq.~8! can be reduced to the time
independent case forn50. Time dependence occurs if th
22451
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boundary conditions, which will be detailed below, provid
nonzero limiting values forĜn .

The most general decomposition of the retarded and
vanced Green’s functions is a linear combination of the th
Pauli matrices.35 Whenever the phase is constant, it can
chosen such that it suffices to define

ĜR(A)5GR(A)t̂31FR(A)t̂1 ,

ĜA52 t̂3ĜR†t̂352GR* t̂31FR* t̂1 . ~9!

Assuming that the thickness of the interlayerd is much
smaller than the coherence length in the interlayer,j
5AD/E whereE is a characteristic energy at which the sy
tem is probed, we can take the retarded Green’s functio
be much larger than its gradient. The double-barrier struc
under consideration is depicted in Fig. 1. Integrating b
sides of Eq.~8! over the interlayer thickness and barrie
gives

\D~ĜR+¹ĜR!nux5012\D~ĜR+¹ĜR!nux5d2

1 in
v0

2
d$t̂3 ,Ĝn

R~E!%1 iEd@ t̂3 ,Ĝn
R~E!#50.

~10!

Zaitsev41 derived effective boundary conditions for th
quasiclassical Green’s function formalism. These were
ther developed for diffusive scattering in the interlayer
Kupriyanov and Lukichev.42 Using the Kupriyanov-
Lukichev boundary conditions for the retarded Green’s fu
tions,

jgB~ĜR+¹ĜR!nux50,d56@ĜR,+ĜSL,R

R #n , ~11!

wheregB5RB /rj, r is the resistivity of the interlayer, and
RB is the interface resistance, we obtain

in
v0

2
$t̂3 ,Ĝn

R~E!%gBd/j1 iE@ t̂3 ,Ĝn
R~E!#gBd/j

12pkBTcS@ĜR,+~ĜSR

R 1ĜSL

R !#n50, ~12!

whereĜSL,R

R are retarded functions in the left and right ele

trodes, respectively. The normalization condition forĜR in

FIG. 1. Schematic representation of the double-barrier SIN
structure. Two superconducting electrodes~S! are separated by two
delta-shaped potential barriers (I1 and I2) and a normal metal inter-
layer ~N!. The position dependence of the pair potential has b
indicated by shading.
3-3
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energy-space and decomposed into Fourier harmonics ca
found from the expressions of Appendix B:

dn05 (
m52`

`

Ĝm
RS E1

n2m

2
v0D Ĝn2m

R S E2
m

2
v0D .

~13!

Equations~12! and ~13! form a complete set of equation
from which the Fourier components ofĜR can in principle
be determined. This recursive schemes reflects the fact,
superconducting correlations can be induced over sev
MAR cycles. Solving the set of equations is complicated
the recurrent nature of the equations. The Fourier harmo
are coupled to each other and have arguments that are sh
in energy.

From the full set of equations, we can find back the q
sistationary Matsubara case by keeping only then50 har-
monic ofGR and then561 harmonics ofFR and neglecting
energy shifts in the arguments. This provides a solution
GR and FR that coincides with the analytical continuatio
(v→2 iE) of the Matsubara solution atw5p/2. The gen-
eral Matsubara solutions for double-barrier junctions w
gB1,2@1 andd/j!1 were obtained in Ref. 26. In the limit o
D50 the analytical continuationv→2 iE of this solution
provides the Green’s a functions atT50 as a function of
energy,

F5
EFS

Egeff /pkBTc1 iGS
S cos

w

2
1 ig_sin

w

2 D ,

~14!

G5
E

~E22uFu2!
, F5

F

~ uFu22E2!
,

whereFS5DS /(DS
22E2) andGS5E/(E22DS

2). The asym-
metry and effective suppression parameter are, respectiv

g25
gB12gB2

gB11gB2
, geff5

d

j

gB1gB2

gB11gB2
. ~15!

As an illustration to these retarded Green’s functions,
density of states in the interlayer,N5ReG, is shown in Fig.
2. It can be seen that forgeff @1 the density of states i
determined by a minigap with a value o
cos(w/2)pkBTc /geff . In the coherent regime22of geff!1 the
gap in the density of states is given byDcos(w/2). The den-
sity of states for intermediate values of the suppression
rameter is characterized by a two-peak structure. These
ings coincide with the calculations of Bezuglyiet al.45 in the
limiting case of a short interlayer.

C. Spectral supercurrent

Supercurrent is carried by states in the weak link and th
occupation is determined by a distribution function. T
supercurrent-carrying density of states, or spectral super
rent ImI S(E), can be determined fromĜR andĜA by

ImI S5
1

8
Tr@ t̂3~ĜR+¹ĜR2ĜA+¹ĜA!#. ~16!
22451
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The supercurrent in the regime ofgeff!1, is found to
have a spectral density

ImI S~E!eRN5
DS

2sinw

ADS
22E2AE22DS

2cos2~w/2!
~17!

for DScos(w/2),E,DS , while ImI S(E)50 for E
,DScos(w/2) andE.DS . This universal expression is inde
pendent of the interlayer thickness, barrier height, and c
tact dimensionality as long as the number of conduct
channels is large.43 The same expression was found in t
case of ballistic interlayer transport.22 The spectral supercur
rent is nonzero only in the rangeDScos(w/2),E,DS , i.e.
there is a minigapDScos(w/2) in the spectrum of the An-
dreev bound states, see the inset of Fig. 3. On the other h
all states in the energy rangeDScos(w/2) contribute to the
supercurrent. In long junctions, a similar behavior for t
density of states was found in Ref. 44 and for the curren
Ref. 8. The contact is in the intermediate regime betwee
short ballistic SNS weak link, with a bound state ener
DScos(w/2) and a tunnel junction with a bound state ener

FIG. 2. Normalized density of states in the interlayer atT50 for
several values of the suppression parametergeff . The inset shows
the minigap that is present forgeff5102 on a smaller scale.

FIG. 3. Normalized spectral supercurrent density as a func
of energy for various values of the suppression parametergeff . The
phase difference between the superconducting electrodes was
at w5p/2. The inset shows the spectral supercurrent in the co
ent regime ofgeff!1.
3-4
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DS . Physically this is caused by the properties of the dis
bution of transparencies, which is a combination of open
closed channels~see Ref. 22!.

In the incoherent regime ofgeff@1, this universality
breaks down. The minigap in the spectrum of Andreev bou
states is now given by cos(w/2)pkBTc /geff . Figure 3 shows
the spectral supercurrent density for several values of
suppression parameter. The sign change atE5DS has also
been observed by Bezuglyiet al.45 and Heikkiläet al.46 Go-
ing beyond the approximationsd!j and gB!1, it was
shown by Scha¨perset al.47 for ballistic junctions that low-
energy states are gradually filled in for larger interlay
thickness and by a larger barrier transparency.

D. Kinetic equations

The energy distribution functions, that determine the
cupation of spectral functions, can be determined from
kinetic equations. From the matrix normalization conditi
Ğ+Ğ51̆, the upper right component implies thatĜR+ĜK

1ĜK+ĜA50. Hence,ĜK can be parametrized as

ĜK5ĜR+ f̂ 2 f̂ +ĜA. ~18!

Furthermore, it was shown by Schmid and Scho¨n48 and Lar-
kin and Ovchinnikov40 that f̂ can be chosen to be diagona
We will adopt the notation

f̂ 5 f L1̂1 f Tt̂3 , ~19!

where f L and f T are those parts of the distribution functio
that are respectively even and odd in energy. Therefore
are named longitudinal and transverse energy distribu
function respectively. The functions can be identified w
energy and particle flow.49 Physically, a deviation off L from
equilibrium is associated with a different effective tempe
ture and a deviation off T from equilibrium with a chemical
potential shift. In equilibrium, f T050 and f L0
5tanh(E/2kBT).

Putting Eqs.~18! and~19! into the Keldysh component o
the Usadel equation~2! and by making use of the Usad
equations for the retarded and advanced Green’s func
finally the kinetic equations for the Fourier components off L
and f T can be written as

~DL+¹2f L!n1~ ImI S+¹ f T!n5
1

\D ~niv01\t in
21!

3@GR+~ f L2 f 0dn0!

2~ f L2 f 0dn0!GA#n ,
~20!

~DT+¹2f T!n1~ ImI S+¹ f L!n5
1

\D ~niv01\t in
21!

3~GR+ f T2 f T+GA!n ,

with the generalized transverse and longitudinal diffusion
efficients being 4DT5Tr(12 t̂3ĜR+ t̂3ĜA) and 4DL5Tr(1
2ĜR+ĜA). With the parametrization of Eq.~9! this can be
22451
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further rewritten as DT5(ReG)21(ReF)2 and DL
5(ReG)22(ImF)2. In obtaining Eqs.~20!, use has been
made of the rewriting of theS̆+Ğ2Ğ+S̆ term by Larkin and
Ovchinnikov40 into a collision integral with characteristic in
elastic scattering timet in . D has been assumed to be neg
gible for simplicity, but a superconducting gap in the inte
layer can be incorporated into the model in a straightforw
way by keeping the terms in the Usadel equation~2! that
depend onD. In the limit of slow time variations, a Fourie
transform over the time difference provides the known mix
representation of the kinetic equations38

DDL¹2f L1DImI S¹ f T2ReGS t in
211

d

dtD ~ f L2 f 0!50,

~21!

DDT¹2f T1DImI S¹ f L2ReGS t in
211

d

dtD f T50,

which follows directly from Eq.~20! for the lowest Fourier
harmonic. The expressions for the supercurrent and diss
tive current components can be derived39 from Eq. ~4!

I S5
1

2eRN
E dE fL~E!ImI S~E!, ~22!

I N5
1

2eRN
E dEDT~E!¹ f T~E!. ~23!

What remains to be derived is a proper set of time-depend
boundary conditions for the kinetic equations.

E. Time-dependent boundary conditions

The Kupriyanov-Lukichev boundary conditions42 for the
quasiclassical Green’s functions can in general be written

gBjĞ+
d

dx
Ğ5Ğ+Ğ12Ğ1+Ğ, ~24!

where Ğ1 and Ğ denote the Green’s functions at the tw
sides of the first interface. From the definition of the Gree
functions in Keldysh space, Eq.~1!, a boundary condition
can be written for each matrix element. In Appendix A, th
set of boundary conditions is rewritten into

gBjF ~12ĜRĜA!
d

dx
f L1~ t̂32ĜRt̂3ĜA!

d

dx
f TG

5@ĜR~Ĝ1
R2Ĝ1

A!2~Ĝ1
R2Ĝ1

A!ĜA#~ f L12 f L!

1@ĜR~Ĝ1
Rt̂32 t̂3Ĝ1

A!2~Ĝ1
Rt̂32 t̂3Ĝ1

A!ĜA#

3~ f T12 f T!, ~25!

where all the products have to be regarded as time conv
tions andf L1/T1 are the distribution functions in the respe
tive reservoir.

The Green’s functions become time dependent by ap
ing a voltage over the interface. In the absence of volta
the Green’s functions in the electrodes only depend on
time difference since equilibrium is assumed. The poten
3-5
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can be introduced in each electrode by a gau
transformation41 of the Green’s function in the electrodes

Ĝ1
R(A)~ t,t8!5Ŝ~ t !Ĝ1

R(A)~ t2t8!Ŝ†~ t8!, ~26!

whereŜ(t) and Ŝ†(t8) are given by

S~ t !5S eieVt/\ 0

0 e2 ieVt/\D ,

S†~ t8!5S e2 ieVt8/\ 0

0 eieVt8/\ D . ~27!

Volkov and Klapwijk33performed a gauge transformation
the interlayer Green’s functions, which works only in th
limit d@j because of the small coupling between the el
trodes in this case, which allows one to neglect the inter
ence terms in the interlayer leading to a local time dep
dence.

By performing the gauge transformation forĜ1
R and Ĝ1

A

and by taking the trace from Eq.~25!, one obtains the firs
boundary condition in time representation. The second eq
tion is obtained by taking the trace after multiplying left- a
right-hand sides of Eq.~25! by t̂3. This results in

DTgBj
d

dx
f T5H ReG1ReGisinFeV

\
~ t2t8!G

1ImF1ReFsinFeV

\
~ t1t8!G J ~ f L02 f L!

2 f TH ReG1ReGcosFeV

\
~ t2t8!G

1ReF1ReFcosFeV

\
~ t1t8!G J , ~28!

DLgBj
d

dx
f L5H ReG1ReGcosFeV

\
~ t2t8!G

2ImF1ImFcosFeV

\
~ t1t8!G J ~ f L02 f L!

2 f TH ReG1ReGisinFeV

\
~ t2t8!G

1ReF1ImFsinFeV

\
~ t1t8!G J , ~29!

where all products are time convolutions and use has b
made of the fact thatf T150, since the electrodes are a
sumed to be in internal equilibrium. The energy distributi
functions are not only coupled through the kinetic equatio
~20!, but through the boundary conditions as well.

At the second interface a similar set of boundary con
tions can be derived, which can be obtained from Eqs.~28!
and~29! by replacingG1 andF1 by G2 andF2, respectively,
and by multiplying the right-hand side of Eqs.~28! and~29!
by 21.
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Note thatDL5(ReG)22(ImF)250 for energies smaller
than the minigap in the interlayer. Hence, for energies
which DL50, boundary condition~29! is replaced byf L
5 f L0. This physically means that the system does not c
duct heat inside the gap and that the distribution in the ga
controlled by coupling to some external heat bath, e
through the substrate, andnot through the superconductin
leads.

Each term in the boundary condition contains time co
volutions. With the aid of the expansion of the Green’s fun
tions in Fourier harmonics and the expressions of Appen
B for the time convolutions of double and triple products, t
convolutions can be worked out for each term. The left-ha
side of Eq.~28! is, for example,

DT+gBj
d

dx
f T5 (

n,n8
E

2`

`

DT,n~E1n8v0/2!gBj

d

dx
f T,n8~E2nv0/2!eiE(t2t8)/\ei [(n1n8)/2\]v0(t1t8)dE.

~30!

The sine and cosine dependencies in the boundary condi
cause additional voltage shifts as well as coupling to hig
harmonics, which can be seen, for example, in the term

f L+@ReGS+ReG+ isin~ t2t8!#

5 (
n,n8

E dE fL,n~E1n8v0/2!ReGn8~E2nv0/2!

3eiE8(t2t8)/\ei [(n1n8)/2\]v0(t1t8)

3
1

2 FReGSS E1
n82n21

2
v0D

1ReGSS E1
n82n11

2
v0D G . ~31!

In principle, the set of kinetic equations~20! together with
the boundary conditions Eqs.~28! and~29!, and expressions
for the time convolutions, such as Eq.~30! and Eq.~31!, now
provide a complete set of equations to solve the energy
tribution functions as function of voltage. However, the co
pling to higher harmonics and energy shifts within the fun
tions themselves make solving the equations cumbersom
principle, a solution should crossover to the solutions
found by the MAR approach22 in the limit of geff!1. In Sec.
III an adiabatic approximation will be developed in order
solve the kinetic equations foreV!DS and a larger suppres
sion parameter.

III. ADIABATIC DYNAMICS

A. Adiabatic approximation

In order to simplify the time dependencies, an adiaba
approximation can be made. When the voltage is small,
phase oscillates slowly and can even be considered quas
tionary. In this case, we only need to keep the time dep
dence in expressions that contain the phase, but can ne
3-6
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all other time dependencies. Consequently, the time con
lutions become simple products and the energy shifts ca
neglected. Therefore, this approximation is called adiaba

A formal derivation of the parameter regime in which t
adiabatic approximation can be used, is based on the
dependence in Eqs.~28! and ~29!. The quasiparticle curren
is determined by the left-hand side of Eq.~28!, namely,
DTgBjd fT /dx. It will be shown in this section that the right
hand side of this boundary condition in the adiabatic limit
equal to thef T terms in Eq.~28!. Hence, deviations from the
adiabatic approximation in the quasiparticle current are o
to be expected when the terms proportional tof L in Eq. ~28!
are not negligible. The first of these terms
f LReG1ReGisin@eV(t2t8)/\#, which can be neglected fo
eV!DS . The second term isf LImF1ReFsin@eV(t1t8)/\#,
which is nonzero only due to the looplike construction w
Eq. ~29!, in which the terms ImF1 and ReF are shiftedeV/2
in energy every cycle, making their overlap nonzero af
approximatelyDS /eV cycles. For large suppression param
eters, ReF;geff

21 . Hence, smallness of this term can now
formulated as (1/geff)

DS /eV!1. Combining the conditions
the conclusion is reached that the adiabatic approximatio
valid wheneV!DS andgeff@1.

In this case, the phasesx1,2 can be introduced by the
parametrization

Ĝ1,2
R 5S G1,2

R F1,2
R eix1,2

F1,2
R e2 ix1,2 2G1,2

R D . ~32!

No additional gauge transformations have to be performe
the boundary conditions. Hence, we can use the param
zation of Eq.~32! directly in the boundary condition~25!.
The first boundary condition is then found by taking the tra
of Eq. ~25!. The second is found by taking the trace af
multiplying with t̂3. With Eq. ~32! and after some rewriting
this gives

gB1,2jDT

d

dx
f T~0,d!56MT1,2@ f T~0,d!7 f T0#,

~33!

gB1,2jDL

d

dx
f L~0,d!56ML1,2@ f L~0,d!2 f L0#,

where

f L0,T05
1

2
tanh

E1eV/2

2kBT
6

1

2
tanh

E2eV/2

2kBT
, ~34!

are the distribution functions in the leads andMT1,2
5ReGSL,R

ReG1ReFSReFcos(x12x2), ML1,25ReGSL,R
ReG

2ImFSImFcos(x12x2), where x12x25w/25eVt in the
case of symmetric barriers. HereG andF are given by Eq.
~14! and

GSL,R
5

E6eV/2

A~E6eV/2!22DS
2

, FS5
DS

ADS
22E2

. ~35!

As can be seen from here, also using Sec. II D, the kin
equations in the quasistationary limit coincide with t
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known adiabatic equations in the mixed representation
derived by Larkin and Ovchinnikov.38 In the absence of in-
elastic scattering, the equations further simplify to

DT~E!
d2f T

dx2
~E,x!1ImI S~E!

d fL

dx
~E,x!50,

~36!

DL~E!
d2f L

dx2
~E,x!1ImI S~E!

d fT

dx
~E,x!50.

Therefore, Eqs.~33! and ~36! provide a set of equations t
describe the time-dependent transport in double-barrier ju
tions in the limit of a large suppression parameter and
small voltage.

B. Dissipative current

From the expression for the dissipative current compon
in Eq. ~23!, and by solving Eqs.~33! and~36! with an ansatz
f T,L5a1,2x

21b1,2x1c1,2, it is obtained that

I qp~ t !5
1

eRN
E

2`

` dE

2

gB11gB2

gB1

MT1
1

gB2

MT2

f T0 . ~37!

This solution is obtained in the limit of no inelastic scatte
ing. The effects of energy relaxation in the interlayer will b
discussed in Sec. IV B. It follows from Eq.~37! that the
quasiparticle current has in general a phase-dependent
tribution through the coefficientsMT1,2. The current is there-
fore time dependent since the phase difference is given
w52eVt/\. The dc component is then determined by av
aging over time.

When one of the superconducting electrodes is repla
by a normal metal, the expressions forMT,L simplify, since
FN50. By putting voltage to zero in the superconductor,
can be shown that the expression for the quasiparticle
rent, Eq. ~37! with MT25ReG, coincides with the known
results of the SININ junction of Volkovet al.29 The addi-
tional termm(E)5d21*dx/MT(E,x) in Ref. 29 is neglected
in our case, since the term is small as compared togB /MT .

As a measure of the subgap conductance of a dou
barrier Josephson junction, the conductance ateV5DS is
calculated and shown in Fig. 4 as a function of temperat
in the limit of geff@1. The inset of Fig. 4 shows the condu
tance ateV5DS as a function of the inverse suppressi
parameter. It can be seen that the conductance is enhanc
a decrease ingeff . Physically, this corresponds to the ope
ing of Andreev channels due to the term ReFSReF in MT .
For geff.10, for which the model of this section is a goo
approximation, the conductance is found to be approxima
proportional togeff

21 . This proportionality will be used in
Sec. V to predict an intrinsic shunt in high-Jc double-barrier
Josephson junctions.

High voltage bias.In the regime of a large voltageeV
@DS , the time dependencies in the electrodes become
coupled and the current in an SINIS junction can be seen
the summation of the current in an SININ’ junction and
N’INIS junction. In this case, the relevant functionsMT in
3-7
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Eq. ~37! simplify, and the presence of excess and deficit c
rent can be calculated. Figure 5 shows the resulting dep
dence of the excess and deficit current on the asymm
parameter, for several values of the suppression param
Note that the decoupling into SININ’ and N’INIS junctions
at eV@DS is valid for all values ofgeff . The limiting case of
a deficit currenteIde fRN54DS/3 for the symmetric limit and
geff@1 coincides with the findings of Zaitsev41 and Volkov
et al.29 The excess currenteIexRN.1.05DS for geff!1 coin-
cides with the results of MAR calculations.22

C. Nonequilibrium supercurrent at finite voltage

From Eq.~23! and a solution of the kinetic equations, th
supercurrent can be determined as a function of voltage
most tunnel junctions and weak links, the time depende
of the spectral supercurrent is harmonic and, by averag
over time, the supercurrent becomes zero at a finite volt
However, due to the additional time dependence off L , the
product of f L and ImI S does not necessarily have to be ha
monic, and a nonzero time-averaged supercurrent can ex
a finite voltage. Physically, the time-dependence off L origi-
nates from the fact that, due to the proximity effect, the h

FIG. 4. Normalized conductance ateV5DS as a function of
temperature~normalized toDS) for geff@1. The inset shows the
normalized conductance ateV5DS as a function of 1/geff at
kBT/DS50.5.

FIG. 5. Excess and deficit current as a function of asymme
for several values of the suppression parameter.
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diffusion coefficient depends on the phase difference, a
known, e.g., from Andreev interferometers.49 We would like
to calculate

I S~V!5
1

2eRN
K E f L~E,t !ImI S~E,t !dEL

t

, ~38!

where the brackets denote time averaging. It can be seen
this expression explicitly depends on the spectral super
rent, which could, for example, be suppressed by a magn
field. Therefore, this current contribution is true supercurr
in the presence of an applied voltage.

Since the time-dependent perturbation off L is much
smaller thanf 0, kinetic equations~21! can be rewritten in the
adiabatic form like Eqs.~36!, now including inelastic scat-
tering,

DT

d2f T

dx2
1ImI S

d fL

dx
5d21f T ,

~39!

DL

d2f L

dx2
1ImI S

d fT

dx
5d21~ f L2 f 0!,

where,d is introduced asd215Nj2/Dt in . Under the con-
ditions of the adiabatic approximation, we can use ag
boundary conditions~33!, and, with ansatz solutionsf T
5a1x21b1x1c1 and f L5a2x21b2x1c2, this provides us
with the solution

f L2 f 05geffImI S

M

gBDT
f T0 , ~40!

where

M5
2MT1MT212geffd

21MT1

~MT11MT212geffd
21!~ML11ML212geffd

21!
.

~41!

From Eqs.~40! and ~41! it can be seen that in the limit o
strong inelastic scattering,t in→0, f L2 f 0 will be propor-
tional to t in and therefore equilibrium is restored.

The nonequilibrium correction tof L is obtained within the
adiabatic approximation. Therefore, we assume that time
pendence only comes into the final expressions via the ph
factor in the spectral supercurrent density ImI S . In the case
of symmetric barriers, Im2I S averaged over time is equal t
the average of sine-squared, which is just a factor 1/2.
supercurrent contribution can therefore be written as

I S5
1

2eRN
geffE

0

`

DT
21~ ImI S!2f T0MdE. ~42!

In order to perform the integral some smearing of the ImI S
2

divergency has to be assumed. Physical reasons for this
always present, like a small amount of inelastic scatteri
An inelastic scattering termg can be taken into account i
the retarded part of the Usadel equations,35 but in the limit of
little inelastic scattering,g!kBTcS, the scattering term can
be presented in the solutions by transforming the energyE to

y

3-8
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E1 ig. In Sec. V, realistic values of the inelastic scatteri
parameter and the suppression parameter will be deri
From these values it can be concluded thatgeffd

21!1 in
most of the practical cases. In this limit, the only contrib
tion to the supercurrent comes fromE.DS , the spectral
supercurrent being zero below the minigap andM being zero
between the minigap andDS . The resulting supercurrent i
this limit is shown in Fig. 6 as a function of the suppressi
parameter and in the inset as a function of voltage.

The physics of this effect is similar to the physics of t
nonequilibrium supercurrent first considered by Lempitsk31

for a long diffusive SNS junction without potential barrie
at the NS interfaces. The mechanism is the conversion
quasiparticle current into supercurrent inside the juncti
formally described by the coupling term ImI Sd fT /dx in Eq.
~39!. An alternative explanation for this mechanism has be
given in terms of thermoelectricity in Ref. 49. Howeve
quantitative differences occur between the cases of long
short junctions. In a long SNS junction withd@j the stron-
gest deviations of the distribution functionf L from equilib-
rium occur at the subgap energy range, at energies of
order of the Thouless energy\D/d2. In the case of MAR, an
additional nonequilibrium correction tof L appears, as show
by Pierreet al.,18 which is beyond the present adiabatic a
proach in which voltage and interface transparencies
small so that the MAR is suppressed. At subgap energies
excitation of the symmetric mode described byf L , generated
by the quasiparticle current, cannot diffuse out of the ju
tion since the corresponding diffusion constantDL vanishes
in the S electrodes. On the other hand, in SINIS junctio
the symmetric mode at low bias is excited only atE.DS
since the quasiparticle current vanishes in the energy ra
E,DS due to the presence of tunnel barriers. Hence, de
tions of f L from equilibrium occur only atE.DS . Since the
diffusion constant in the S electrodesDL,1 at E.DS , the
excitations atE.DS are partially trapped at these energie
though the magnitude of the effect in SINIS junctions
smaller than in SNS junctions. With a decreasing bar
height in SINIS junctions, an Andreev contribution to th

FIG. 6. Nonequilibrium averaged supercurrent at a finite volta
bias (eV50.1DS) at kBT50.2DS and a small inelastic scatterin
rate g51023DS as a function of the suppression parameter. T
inset shows the supercurrent as a function of bias voltage atkBT
50.2DS for a fixed suppression parametergeff .
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quasiparticle current appears and deviations from equ
rium should also occur atE,DS . The study of this cross-
over, however, is beyond the scope of this paper.

The nonequilibrium supercurrent at a certain voltage
approximately two order of magnitude smaller than the
supercurrent at zero voltage, but is comparable with the q
siparticle current at the same voltage. The latter conclusio
based on the assumption that inelastic scattering is ne
gible, but we will see in Sec. IV that energy relaxation in t
interlayer increases the subgap quasiparticle current. Th
fore we can conclude that the nonequilibrium supercurr
can be present in double-barrier junctions, but that un
realistic junction parameter values, the contribution to
total current is minor. Note, that the nonequilibrium sup
current in the considered regime is proportional to the squ
of the sine of the phase difference over the junction,I S
;sin2f. This effect can give rise to the occurence of ha
integer Shapiro steps in theIV characteristics when the junc
tion is irradiated by microwaves.50,51

IV. INELASTIC SCATTERING

In many mesoscopic systems and weak links, the time
flight of a quasiparticle through a normal metal or superc
ducting layer is much shorter than the characteristic inela
scattering time in the specific material. Hence, inelastic s
tering in mesoscopic systems and weak links is usually
glected. However, in double-barrier junctions, the time
flight can be large. Because of the normal reflections at
interfaces, a quasiparticle on average traverses the interl
many times. The time that a quasiparticle effectively spe
in the interlayer is proportional toD21, whereD is the trans-
parency of each barrier. For a transparency of the orde
1026, the time of flight in the interlayer is for example of th
order oft5d/DvF50.5 ns, for a thickness of about 10 n
and a typical Fermi velocity of 1.53106 m/s.52

In most double-barrier Josephson junctions Al is used
an interlayer material, and therefore the inelastic scatte
time in Al should be considered. Kaplanet al.53 estimated an
inelastic scattering time in bulk Al of 400 ns which is muc
larger than 0.5 ns. However, magnetoresistance and mi
wave measurements in thin films of Al~Refs. 54 and 55!
showed that the inelastic scattering time in thin Al films
orders of magnitudes smaller than in bulk, namely, of
order of 0.1 to 1.0 ns in films of a few to 10-nm thicknes
Therefore, in the modeling of time-dependent transport pr
erties of double-barrier junctions, inelastic scattering, or
ergy relaxation, has to be taken into account. The inela
scattering comprises both electron-phonon and elect
electron scattering.

A. Derivation of a microscopic model

In this section, a microscopic model will be derived f
the quasiparticle current as function of voltage in doub
barrier Josephson junctions with low-transparent barriers
will be shown that the results coincide with the phenome
logical model by Heslinga and Klapwijk,56 who derived their
model by matching the population and extraction rates of
quasiparticles in the interlayer.

e

e
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In this section, the assumption will be made thatgeff
@1. In this approximation, the proximity effect can be n
glected, i.e.FR(A)50. Furthermore, the spectral supercurre
ImI S(E,t)50, ReG(E)51, andDL5DT51. In this case,
none of the quantities explicitly depends on time. Then,
kinetic Eqs.~20! can be simplified to

Dt in

]2

]x2
f L~E,x!2@ f L~E,x!2 f 0~E!#50,

~43!

Dt in

]2

]x2
f T~E,x!2 f T~E,x!50,

where f 0(E)5tanh(E/2T) andD is the diffusion constant in
the interlayer. Use is made of the fact thatf T0(E)50 in
equilibrium. The kinetic equations are decoupled in this ca
but f T and f L are coupled through the boundary condition

The boundary conditions can either be obtained by s
plifying the relevant terms of the expressions that contain
harmonics, such as Eqs.~30! and ~31!, or by starting from
the time-dependent boundary conditions,@Eqs. ~28! and
~29!#. In the latter case, the transformation to energy spac
straightforward. The right-hand sides of Eqs.~28! and ~29!
only contain terms that depend on time difference sin
FR(A)50, e.g.,

ReG1~ t2t1!+ isin
eV~ t2t1!

\
+ReG~ t12t8!+ f L~ t12t8!

5E dEe2 iE(t2t8)/\ReG~E! f L~E!G2 , ~44!

where G25ReG1(E1eV/2)1ReG1(E2eV/2). The left-
hand side of Eq.~28! becomes

DTgBj
]

]x
f T~ t,t8!5gBj

]

]xE dEe2 iE(t2t8)DT~E! f T~E!.

~45!

Hence, together with ReG51, finally the boundary condi-
tions read

gBj
]

]x
f T~E,6d/2!57 f T~E,6d/2!N1

2 f L~E,6d/2!N21R2 ,
~46!

gBj
]

]x
f L~E,6d/2!57 f L~E,6d/2!N1

2 f T~E,6d/2!N26R2 ,

where N65ReG1(E1eV/2)6ReG1(E2eV/2) in the su-
perconductors and R65ReG1(E1eV/2)3 f 0(E1eV/2)
6ReG1(E2eV/2) f 0(E2eV/2). The kinetic equations pro
vide that c152a1Dt in52a1d for the ansatz f T5a1x2

1b1x1c1 and f L5a2x21b2x1c2. Using boundary condi-
tions ~46! and neglecting terms proportional tod2, the solu-
tion can be simply found. The quasiparticle current is giv
by Eq. ~23!, whered fT /dx5b1, andb1 is given by
22451
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1

gBj

R2N12R1N21~R22 f 0N2!/Gt in

N111/Gt in
, ~47!

where G215gBdj/D\5e2N(0)RBd/\ is the tunneling
injection rate into the normal metal interlayer,N(0) the un-
normalized density of states in the interlayer andRB the
specific barrier resistance. Using the fact that density
states functions are symmetric in energy andf 0 is asymmet-
ric in energy, (R22 f 0N2) can be simplified to 2ReG1(E
1eV/2)@ f 0(E1eV/2)2 f 0(E)# and R2N12R1N2

5 2ReG1(E1eV/2)ReG1(E2eV/2)@ f 0(E1eV/2)2 f 0„(E
2eV/2)…#. With sN/2gB5e2N(0)D/gB5RB

21 , the expres-
sion for the quasiparticle current finally becomes

I 5
2

eRN
E

2`

`

dEReG1~E1eV/2!

3

ReG1S E2
eV

2 DF_1F f 0S E1
eV

2 D2 f 0~E!G /Gt in

G111/Gt in
,

~48!

where F_5 f 0(E1eV/2)2 f 0(E2eV/2) and G15ReG1(E
1eV/2)1ReG1(E2eV/2). This expression is equivalent t
the findings of Heslinga and Klapwijk,56 in the limit of
ReG51, who derived a model by equating the populati
and extraction rates in the interlayer. Zaitsev’s results for
SININ junction in the limit of no energy relaxation28 coin-
cide with our findings as well. The equivalence of a mes
copic or phenomenological approach and the more rigor
Green’s functions treatment is shown by Argaman50 to hold
for the equations for current. Here we have proven that
final expression@Eq. ~48!# also follows from the Green’s
function approach, using the appropriate boundary con
tions.

B. Influence of inelastic scattering on transport properties

Examples of possible tunneling processes are indicate
Fig. 7. In one of the processes a quasiparticle is inelastic
scattered in the interlayer. Equation~48! coincides in the
limit of strong inelastic scattering (Gt in50) with the known
result for two SIN tunnel junctions in series. In the absen
of inelastic scattering, Eq.~48! reduces to

FIG. 7. Semiconductor-diagram representation of tunnel
scattering rates in a double-barrier junction at bias voltageeV
5DS . The energy conserving processes~i! and~ii ! are, in the case
of inelastic scattering, complemented by process~iii !.
3-10
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I 5E
2`

` 2dE

eRN
ReG1S E1

eV

2 DReG1S E2
eV

2 D F2

G1
. ~49!

Figure 8 shows both limiting cases as well asIV curves for
intermediate values of the scattering parameter, taken in
present limit ofgeff@1. It can be seen in the inset of Fig.
that inelastic scattering enhances the subgap conducta
This effect will be discussed in section V in order to expla
the large subgap conductance observed in double-ba
junction measurements.

Equation~49! gives a deficit current ofeIde fRN54DS/3
for eV@DS , which coincides with the findings of Sec. III B
In analogy with the approach of Sec. III B to calculate exc
and deficit currents by summing the respective contributi
from SININ and NINIS junctions, the same can be calcula
by including inelastic scattering as well. Figure 9 shows
resulting crossover from excess to deficit current as func
of the suppression parameter for several values of the ine
tic scattering parameter. ForGt in,1021 only a small deficit
current is predicted ateV@DS . However, at moderate value
of V, i.e., 2DS,eV,4DS , a considerable deficit current i
still present, as can be seen, for example, in Fig. 8.

FIG. 8. IV characteristics atkBT/DS50.25 andgeff@1 on the
basis of Eq.~48! for several values of the inelastic scattering p
rameterGt in . The inset shows the subgap conductance ateV5D as
a function ofGt in .

FIG. 9. Excess and deficit current as function of the suppres
parameter for several values of the inelastic scattering param
Gt in .
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V. APPLICATION: THE NATURE OF THE INTRINSIC
SHUNT

The resistively and capacitively shunted junction mod
shows how a sinusoidal supercurrent-phase relation, a lin
quasiparticle current, and a displacement current determ
the shape of the entireIV characteristic of a Josephson jun
tion. The model can also be applied to an unshunted junct
but then the subgap resistanceRsg appears in the expressio
for the Stewart-McCumber parameter

bc52p
~ I cRN!2C

I cF0
S Rsg

RN
D 2

, ~50!

where C is the capacitance of the junction andF0(52.07
310215 Wb) the flux quantum. Likharev57 showed that the
relation betweenbC and the presence of hysteresis depen
on the model that is used to describe the junction~e.g., the
nonlinear resistive model, with different dependencies for
subgap conductance, and the tunnel junction microsco
model!, but roughly speaking, it can be said thatbC.1 cor-
responds to hystereticIV characteristics. Hysteresis refe
here to the existence of two branches in theIV curve, one
going from the critical currentI c to the voltage state, and on
going back at the return current (I R,I c) from the voltage
state to the state atV50.

The capacitance of a double-barrier junction is not kno
a priori. In Ref. 58 a set of Nb/Al double-barrier Josephs
junctions was fabricated in order to make superconduc
quantum interference devices~SQUIDs!. From resonances in
the SQUID washer,C was determined to be 0.015 pF/mm2,
corresponding to the capacitance of two SIS junctions
series.58 It is assumed that this value is only weakly depen
ing on the transparency of the barrier. The dependence oI c
andRN on the junction parameters, such asgeff , follow from
the modeling of the stationary properties in Ref. 26. T
subgap conductance as function of the suppression param
is determined in Sec. III B.

First, the regime of junctions withgeff@1 will be dis-
cussed. For this purpose, low critical current density Nb
double-barrier junctions were fabricated according to
process of Ref. 58. Figure 10 shows a typical measuredIV

-

n
ter

FIG. 10. ExperimentalIV curves~solid lines! at 4.2 K ~i! and
1.6 K ~ii ! together with theoretical fits~dashed lines! with Gt in

50.1 and 0.3, respectively.
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characteristic, together with anIV curve from the nonequi-
librium model of Sec. IV B, where inelastic scattering
taken into account. At 4.2 K, the experimental and theor
cal curves are very much alike, taking into account the f
that only one free parameter was used to fit, namely,Gt in .
From

Gt in5
pTcSkB

geff

t in

h
, ~51!

and the fittedGt in50.1 andgeff523103 ~which was ob-
tained from fitting the critical current temperature depe
dence!, an inelastic scattering timet in50.3 ns is obtained in
the Al interlayers. At 1.6 K, a magnetic field was used
suppress the supercurrent in order to resolve the subgap
siparticle conductance. The deviation of the fit from the e
periment around 2DNb is due to the nonequilibrium enhanc
ment of the gap in the interlayer, as described in Ref.
which can be included in the model by incorporatingDAl .
However, the good fit well below 2DNb allows for the ex-
traction oft in50.9 ns at 1.6 K.

The values for inelastic scattering correspond to meas
ments by Santanamet al.,55 who found t in50.2–1.0 ns in
10-nm Al films at 4.2 K, and Van Sonet al.54 who found
t in50.8–0.9 ns in 7-nm Al films atTcAl . Our values of
t in50.9 ns at 1.6 K and 0.3 ns at 4.2 K indicate a scal
with T21 rather thanT23, which was found and discussed
well by Santanamet al.55 Note that the values for the inelas
tic scattering are much smaller thanpkBT, which means that
the stationary properties are not influenced byt in . Further-
more, from these values it is seen thatgeffd

21@1 as long as
geff<103, which was used in order to obtain Fig. 6.

As a measure of the subgap conductance, the theoreti
expected normalized conductance ateV5DS can be found in
Fig. 8, as function of the inelastic scattering parameterGt in .
It can be seen that the subgap resistance in the limit of z
inelastic scattering (t in→`) is only determined by the tem
perature. The conductance in this limit is therefore called
thermal contribution. The relation between subgap resista
and geff is now known for a fixed value oft in sinceG is
given bypkBT/geff .

The dependence ofI cRN on geff is known from the Mat-
subara modeling of the stationary properties of doub
barrier junctions.26 Together with the definition ofgeff , it
follows that

RN
215

e2kF
2

2p2\

pkBTcSd

\vFgeff
, ~52!

where the parameter values can be taken asvF51.53106

m/s,52 d56 nm, andTcNb59.2 K. Putting these theoretica
dependencies together with the experimentally determi
parameters into Eq.~50!, providesbC as function of the criti-
cal current density for junctions withgeff@1, see Fig. 11.

The shunting behavior can physically be explained as
lows. A direct transfer process of quasiparticles from o
electrode to the other is prohibited when the quasipart
energy falls within the gap of the other electrode. Howev
by scattering inelastically in the interlayer, the quasipartic
22451
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are redistributed over energy, allowing some quasiparticle
enter the other electrode, which results in an enhanced
ductance, as illustrated in Fig. 7. The amount of quasipa
cles that is scattered inelastically increases for decrea
barrier transparencies, since the effective lifetime of a qu
particle in the interlayer is then increased. For strong ine
tic scattering, the double-barrier junction can be regarded
a series connection of SIN and NIS junctions, where
energy distibution function in the interlayer is the equili
rium Fermi functionf 05 tanh(E/2kBT). Here it should be
noted that the assumption is made that the inelastic scatte
is dominated by electron-phonon interactions, and that th
is coupling between the interlayer and a heat bath. It
known18 that, in the contrary nonadiabatic limit of MAR an
strong electron-electron interactions, the energy distribut
in the interlayer is given by the Fermi function at a tempe
ture kBT5D1eV.

In order to understand the intrinsic shunt of all Al-bas
double-barrier junctions, the regime of high-Jc junctions
~typically larger than 100 A/cm2) should be considered a
well. The second contribution to the subgap conductanc
due to the Andreev reflection processes at the t
superconductor-normal metal interfaces, which was forma
introduced by the term Re(F)Re(FS). The Andreev channels
open at a high transparency of the interface barriers. In
order, this contribution is independent of temperature, bu
depends on the suppression parameter, which is shown in
inset of Fig. 4 for a fixed temperature. For the practical ran
of parameters, this means that the contribution is invers
proportional togeff . Figure 12 shows the resulting hysteres
as function of the critical current density. Figure 12 predi
that nonhysteretic double-barrier junctions can be obtai
with critical current densities of the order of 10 kA/cm2 and
higher. In order to make a comparison with SIS junctions
similar curve has been calculated based on Eq.~50! and plot-
ted in Fig. 13. In this calculation it was assumed thatC
53.0mF/cm2, I cRN52.0 mV, andRsg52RN . A bigger sub-
gap resistance will shift the SIS curve even more to the rig

Summing up all contributions to the subgap conducta
provides the theoretical curve in Fig. 13 for several values
t in and d56 nm, where Zappe’s equation60 was used to
calculate the ratio of return and critical currentI R /I c from
bC . The summation is performed in a straightforward wa
since the contributions due to inelastic scattering and

FIG. 11. ExpectedbC as a function of critical current densit
from the inelastic scattering model,T54.2 K.
3-12
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opening of Andreev channels do not overlap, i.e., they oc
in separate regimes of the suppression parameter.

An increase int in is seen to increase the hysteresis a
shift the maximum hysteresis to lower values ofJc . A
thicker interlayer will both decreaseJc as well as shift the
curve upward, sinceGt in is larger in this case. A decrease
temperature rapidly enhances the hysteresis, since both
thermal contribution to the subgap conductance decrease
well as the contribution of inelastic scattering, sincet in in-
creases with temperature. This explains the strong influe
of temperature on hysteresis as observed in experime
which is stronger than could be expected from an increas
I c alone.

Observed experimentalI R /I c values are also shown i
Fig. 13, and it can be concluded that the experiments are
qualitatively and quantitatively very well explained by th
model in the sense that both the nonmonotonic hyster
dependence on critical current density as well as the ac
hysteresis values are obtained.

FIG. 12. Theoretical model forbC as function ofJc ~and as
function of geff in the inset!, based on the contribution of Andree
channels to the subgap conductance in high-Jc junctions atT54.2
K, in comparison with the hysteresis of SIS junctions.

FIG. 13. Theoretical model~dotted line! for the ratio of return
and critical current, based on the sum of the shunting contribut
at 4.2 K from both inelastic scattering and Andreev channels,
several inelastic scattering times. Experimental data are shown
this paper (j), Ref. 61 (+), Ref. 62 (h), and Ref. 63 (m).
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VI. CONCLUSION

Time-dependent and nonequilibrium transport proper
of SINIS junctions have been studied by means of a mic
scopic Green’s function approach. The kinetic equations
the longitudinal and transverse energy distribution functio
are derived from the Keldysh-Usadel equation. The appro
ate boundary conditions are derived by starting from
Kupriyanov-Lukichev boundary conditions and by applyin
gauge transformations in the electrodes. The resulting se
equations has a recurrent nature, in terms of coupling
Green’s functions to higher harmonics as well as to functio
with shifted energy arguments. This lays out a theoreti
framework to microscopically study time-dependent pro
lems in superconducting – normal metal devices.

We apply this formalism in order to develop a theory
the subgap conductance of SINIS junctions. This cond
tance is a very favorable feature for applications but so
not understood on a microscopic level. In the adiabatic lim
of a small voltage and a large suppression parameter,
time dependencies simplify and the equations are solve
determine the dissipative current in double-barrier Joseph
junctions. Known limiting cases, such as the SININ’ jun
tion, are reproduced. Excess and deficit current are de
mined as function of the suppression parameter and
asymmetry between the barriers. Excess current as hig
eIexRN.1.05DS can exist in double-barrier junctions in th
symmetric case forgeff!1, and maximum deficit current is
reached in the symmetric case forgeff@1. The subgap con-
ductance enhancement by decreasinggeff is caused by the
opening of Andreev channels.

It is found that the time-dependent nonequilibrium cont
bution to the energy distribution function gives rise to a no
zero averaged supercurrent in the presence of a voltage
This effect should be observable in double-barrier junct
experiments.

In contrast to most studied mesoscopic systems, inela
scattering in the interlayer of double-barrier junctions c
have a strong influence on the electronic transport even
very short devices. A microscopic derivation of the depe
dence of the transport properties on the inelastic scatte
parameter is given.IV characteristics show an enhanced su
gap conductance for increased inelastic scattering rates.

The actual value for the inelastic scattering time in t
interlayer of experimentally realized devices was obtained
fitting the microscopic model. The inelastic scattering valu
explain, together with the opening of Andreev channels,
nature of the intrinsic shunt in double-barrier junctions.
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APPENDIX A: DERIVATION OF THE BOUNDARY
CONDITIONS

From the definition of the Green’s functions in Keldysh3
Nambu space@Eq. ~1!#, a boundary condition can be writte
for each of the matrix elements of Eq.~24!:

gBjĜR
d

dx
ĜR5ĜRĜ1

R2Ĝ1
RĜR,

gBjĜA
d

dx
ĜA5ĜAĜ1

A2Ĝ1
AĜA,

gBjS ĜR
d

dx
ĜK1ĜK

d

dx
ĜAD

5ĜRĜ1
K1ĜKĜ1

A2Ĝ1
RĜK2Ĝ1

KĜA. ~A1!

With definition ~18!, the left-hand side of the latter of thes
three boundary conditions becomes

gBjF S ĜR
d

dx
ĜRD f̂ 1ĜRĜR

d

dx
f̂ 2ĜR

d

dx
~ f̂ ĜA!

1ĜRf̂
d

dx
ĜA1 f̂ ĜA

d

dx
ĜAG . ~A2!

With the aid of the first two equations in Eq.~A1! this can be
rewritten into

gBjF ĜRĜR
d

dx
f̂ 2ĜR

d

dx
~ f̂ ĜA!1ĜRf̂

d

dx
ĜAG

1~ĜRĜ1
R2Ĝ1

RĜR! f̂ 2 f̂ ~ĜAĜ1
A2Ĝ1

AĜA!. ~A3!

By making use of the normalization conditionGR(A)GR(A)

51 and the definition forf̂ and f̂ 1 @Eq. ~19!#, this can be
futher rewritten as

gBjF d

dx
~ f L1 t̂3f T!2ĜR

d

dx
~ f L1 t̂3f T!ĜAG

1~ĜRĜ1
R2Ĝ1

RĜR!~ f L1 t̂3f T!

2~ f L1 t̂3f T!~ĜAĜ1
A2Ĝ1

AĜA!, ~A4!

which is equal to
22451
gBjF ~12ĜRĜA!
d

dx
f L1~ t̂32ĜRt̂3ĜA!

d

dx
f TG

1~ĜRĜ1
R2Ĝ1

RĜR2ĜAĜ1
A1Ĝ1

AĜA! f L

1@~ĜRĜ1
R2Ĝ1

RĜR!t̂32 t̂3~ĜAĜ1
A2Ĝ1

AĜA!# f T .

~A5!

The right-hand side of the last boundary condition in E
~A1! can be rewritten with the aid of Eq.~18! into

ĜRĜ1
Rf̂ 12Ĝ1

Rf̂ 1ĜA2ĜRf̂ 1Ĝ1
A1 f̂ 1Ĝ1

AĜA

2 f̂ ĜAĜ1
A2Ĝ1

RĜRf̂ 1ĜRf̂ Ĝ1
A1Ĝ1

Rf̂ ĜA. ~A6!

With Eq. ~19! for f̂ and f̂ 1 this becomes

@ĜR~Ĝ1
R2Ĝ1

A!2~Ĝ1
R2Ĝ1

A!ĜA# f L1

1@ĜR~Ĝ1
Rt̂32 t̂3Ĝ1

A!2~Ĝ1
Rt̂32 t̂3Ĝ1

A!ĜA# f T1

3@~ĜR2ĜA!Ĝ1
A2Ĝ1

R~ĜR2ĜA!# f L

1@ĜRt̂3Ĝ1
A2 t̂3ĜAĜ1

A1Ĝ1
Rt̂3ĜA2Ĝ1

RĜRt̂3# f T .

~A7!

Equating left- and right-hand sides of the last boundary c
dition in Eq. ~A1!, i.e., Eqs.~A5! and ~A7!, respectively,
finally gives the form of the boundary condition as presen
in Eq. ~25!.

APPENDIX B: TIME CONVOLUTIONS IN ENERGY
SPACE

The expression for a convolution of two functions,

a+b~ t,t8!5E
2`

`

dt1a~ t,t1!,b~ t1 ,t8!, ~B1!

can be transformed by changing variables

a+b~ t,t8!5E
2`

`

dt1aS t2t1 ,
t2t1

2 D ,bS t12t8,
t12t8

2 D .

~B2!

Subsequently, a Fourier transform to energy-frequency sp
can be made:
a+b~ t,t8!5E
2`

`

dt1dvdEdv8dE8a~E,v!eiE(t2t1)/\eiv(t1t1)/2\b~E8,v8!eiE8(t12t8)/\e[ iv8(t11t8)]/2\

5 (
n8n8

E
2`

`

dt1dEdE8an~E!eiE(t2t1)/\einv0(t1t1)/2\bn8~E8!eiE8(t12t8)/\ein8v0(t11t8)/2\

5 (
n8n8

E
2`

`

dEdE8an~E!eiEt/\einv0t/2\bn8~E8!e2 iE8t8/\ein8v0t8/2\d~2E1nv0/21E81n8v0/2!

5 (
n8n8

E
2`

`

dE8anS E81
n1n8

2
v0Dbn8~E8!e2 iE8(t2t8)/\ei ~n/2! v0(t2t8)/\ei [(n81n)/2\]v0(t1t8). ~B3!
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With an energy-shiftE5Ẽ1nv0/2 this becomes

a+b~ t,t8!5 (
n8n8

E
2`

`

dEanS E81
n8v0

2 Dbn8S E2
nv0

2 D3e2 i [E(t2t8)/\]ei [(n81n)/2\]v0(t1t8). ~B4!

The triple products in boundary conditions~3.34! and~3.35! can be worked out in the same manner. The sine and cosine t
cause shifts in the arguments. An example of the result of a triple convolution is given in Eq.~31!.
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