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Microscopic nonequilibrium theory of double-barrier Josephson junctions
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We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary
phenomena, using the time-dependent quasiclassical Keldysh Green’s function formalism. We supplement the
kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in
a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the
quasiparticle current can show excess current as well as deficit current and how the subgap conductance
behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution
function is found to cause a nonzero averaged supercurrent even in the presence of an applied voltage. Energy
relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport prop-
erties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is
shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier
junctions can be explained in terms of energy relaxation and the opening of Andreev channels.
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I. INTRODUCTION current iry'ection was studied in structures with ballistic
transport->-%/

The Josephson effect is a hallmark of superconductivity. It Deviations from equilibrium are also reflected in the qua-
metrology and sensing and classical and quantum logic cidunctions arises from multiple Andreev reflectioiMAR) of

cuits. Moreover, a detailed study of the Josephson effect iﬁuasmartlcles. A quasiparticle gaia¥ in energy each time

mesosconic devices provides deep insight into the mech L traverses the interlayer, resulting in a strong nonequilib-
: b °S P P 9 . #um distribution function at subgap energies, as observed by
nism of the formation and transport of superconducting Corpigrreet 4118 |n point contacts, the microcscopic description

relations in weak links and at interfaces. Itis known from theof the current in terms of MAR was derived by Averin and
microscopic theory of superconductivity that the supercurBardas'® based on a scattering matrix approach, while Cue-
rent across weak links is carried by Andreev bound stategas et al?° described MAR in quantum point contacts by
(ABS’s). The supercurrent depends both on the ABS energyneans of a tunnel Hamiltonian approach. For the case of an
levels and on their population, i.e. on the quasiparticle disSNS junction with a long interlayer as compared to the co-
tribution function over energy. This provides the possibility herence lengtiiincoherent regime the current due to MAR

of an external control of current. It was realized a long timeWas calculated by Bezuglyit a'-?l .

ago that deviations from equilibrium may strongly modify ~ When tunnel barrierslj are introduced at the SN inter-
the transport properties of weak links and Josephson tunné‘i‘?es' the quasiparticles in short junctions can undergo trans-

junctions. A review of early work on various aspects of non-”"(sjsr':)']| resl?lnances, _rtesultmgr;] n a .degh?szlr;gtr? f tt?e eI%ctrogs
equilibrium superconductivity was given by the papers inaNnd NO'ES. FOWEVET, It was snown In Ret. attor a broa

Refs. 1 and 2 and the one by KOpﬁiﬁ-.WO main topics in transmission resonance in a superconductor-insulator-normal

this field are the effects arising from a charge imbal4nce metal-insulator-superconductdBINIS) junction, the reso-

d effects f timulati f ductivity b " nance energy width being larger than the ABS, coherent
igl fieeljs(,:6s rom a stimuiation of superconductivity by ex er'transport occurs, and a microscopic model was given in

) o . terms of MAR, integrated by a universal distribution of
The recent progress in the fabrication of superconductmgr‘,jmspt,:lrency eigenvalu®lt is shown by Navefet al2* that
structures of submicrometer size has stimulated a renewgfle same distribution function also describes electrical trans-

interest in nonequilibrium effects in Josephson junctionsport in high critical current density junctions. In order to
The effect of supercurrent control by current injection frommodel the nonstationary and nonequilibrium transport
additional terminals was first studied theoreticllfyand  through SINIS structures in the general case, a full Keldysh
demonstrated experimentdfly* for a diffusive super- Green’s function approach is required. The derivation of this
conductor—normal metal—supercondud®NS junction. In  microscopic model as well as its solutions is the scope of this
this case, even a sign reversal of the critical current isrticle.

possible®!* Additionally, the control of the supercurrent by  SINIS junctions are promising basic elements for applica-
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tions in classical computing and metrology, because they are Il. KELDYSH FORMULATION
intrinsically shunted. Both rapid single flux quantum Idgic
and digital voltage standards are electronic applications fO{O

which the use of these structures seems prom%ﬁimg)w- energy-dependent properties of the system can be derived. In
ever, important features of tH¥ characterstics are not suf- 4qgition to obtaining spectral quantities, we need to know
ficiently understood yet, such as the magnitude of the subgagoyy the states are populated under nonequilibrium condi-
conductance and the nature of the intrinsic shunt of thesgons. For this purpose Keldy¥hproposed a set of propaga-
junctions. The experimental observation that the hysteresis igyrs along a contour in the complex-time plane that allows
thelV curves depends nonmonotonically on the critical cur-one to describe the real-time evolution of a system outside
rent density has not yet been explaiféd’ Thus, under-  equilibrium and at a finite temperature. The review of Ram-
standing the transport properties on a microscopic level wilmer and SmitfP describes the use of the Keldysh technique
be valuable for electronic applications. Here, these transpoih the transport theory of metals. The Keldysh method is
phenomena will be clarified in terms of the opening of An-introduced specifically for nonequilibrium superconductivity
dreev channels and inelastic scattering in the interlayer.  in Refs. 36—-39.

Earlier work concentrated on modeling thé character- The quasiclassical approximation is used, in the sense that
istics of double-barrier junctions in specific limiting cases.rapid oscillations of the wave functions on the scale of the
When one of the electrodes is replaced by a normal metal;€rmi wavelength are averaged out. Furthermore, in this pa-
the time dependencies simplify considerably, since formallyP€r it is assumed that the transport through the interlayer is
one can then put the voltage to zero in the superconductoﬁj.'ﬁus'v_e’ the thickness being much Iarger. than the elastic
The IV characteristics of superconductor-insulator-normafScattering length, so that the Usadel equation can be used.
metal-insulator-normal met&BININ) junctions were studied
by means of the quasiclassical Green’s functions technique A. Time-dependent Usadel equation
by Zaitsev;® Volkov et al,* and Zaitsewet al** Lempitskir* A compact notation of the equations for the quasiclassical

studied nonequilibrium effects on the nonstationary properGreen’s functions becomes possible by introducing the
ties of long SNS junctions in the absence of interface barrier&reen’s function in Keldysh Nambu space:

and Kadiri? used a time-dependent Ginzburg-Landau ap- o
proach, valid only in a narrow temperature range. Another . GR GK)
0o G*

The Matsubara Green'’s function technique can be applied
a many-body system in equilibrium, from which the

limiting case is the double-barrier structure with a long in- G=
terlayer as compared to the coherence length. The derivation

of time-dependent transport properties in this case simplifieshe quasiclassical Green’s functi@ is a function of two
since a decoupling of the electrodes is possible, as, e.g., stuimes, t andt’, and the time-dependent Usadel equation in

ied by Volkov and KlapwijR® and Bezuglyiet al** the absence of a vector potential redds
In this paper, a microscopic quasiclassical theory will be

given for a double-barrier Josephson junction with two su- L IG oG ...
perconducting electrodes and a short interlayer. The inter- —DﬁV(GoVG)+?3ﬁE+—,ﬁ}g—iA(t)GJrGiA(t’)
layer will be assumed to be a diffusive normal metal, but it at
will be indicated how the model can be extended in a =S ,G-GoS ) @)
straightforward way to incorporate a superconducting gap in nel el

the interlayer. The Keldysh formalism is introduced in Sec.where

Il. The spectral supercurrent density is obtained, and appro-

(€

- -

priate time-dependent boundary conditions are derived to . 75 0\ . (A 0O
supplement the kinetic equations for the energy distribution =y & A= 0 Al
3

functions in the interlayer. The technical scheme for solving
the time-dependent Keldysh-Usadel equation may have ap- -
plications beyond the present paper. Solutions are presented - 0 A\, et O
in Sec. Ill for the adiabatic limit oBV<Ag. As an intrigu- A= A* o) el g 3 )
ing nonequilibrium effect in a double-barrier Josephson junc- el
tion, we show that even at finite voltage bias, there can be @ is the diffusion ConStantiinel the self-energy with

nonzero averaged supercurrent. Energy relaxation due to ifetarded, advanced, and Keldysh components, * de-
elastic scattering is a phenomenon that strongly modifies thgotes the complex conjugate anddenotes a convolution
energy distribution function. It will be shown in Sec. IV that jer the internal time coordinates e.gi- (t t’)oé
inelastic scattering is important in a double-barrier Josephson L TTmen

junction and how this effect can be incorporated into the_fgtgj“i'(t’_;;)qtl’t )- .Th? fur;]cUonG IS. norr]m?llzlzd h
microscopic model. As an application of the microscopicaS °G=1. The expression for the current in the Keldys

model, the nature of the intrinsic shunt of double—barrierforrnallsm 1S

junctions will be discussed in Sec. V. The observed non-
monotonic hysteresis vs critical current density dependence, | =
as well as the actual values, are explained. 2e

©)

1 ~ ARy ~K_ L AKT~A
RNI dETI 3(G"VG "+ G "VGY)]. (4)
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The Green’s functions can be transformed to energy- N
frequency spaceH,w) by Fourier transforming the func- I I,
tionsG(t—t’,(t+1t')/2):

Al
v © t+t’
&Ew=[ 8-t S |.[N| S
2 5
Xe—iE(t—t')/heiw(t+t’)/2ﬁd(t_t/)d(t+t/)/2. .&d—i
) FIG. 1. Schematic representation of the double-barrier SINIS

This transformation is analogous to the Wigner representas-”UCthe- Two Supefcondut_:ting electro@8sare separated by two

tion of the full doublecoordinateGreen’s function. Spectral d€lta-shaped potential barriers @nd ;) and a normal metal inter-

quantities that only depend on energy and not on frequen?zy.er(N). The pogltlon dependence of the pair potential has been

after Fourier transforming, such as the equilibrium Green'dndicated by shading.

feunnccél%rso'rne tgguerilsﬂrrc;?]e;(’)rmggdzﬁr;]dtgpmﬂ;ﬁ g; i;r:ﬁer'boundary conditions, which will be detailed below, provide

be transformed toE,w) space. Hence, the Usadel equation"0NZero limiting values fo&,.

can be rewritten inE, ) space as The most general decomposition of the retarded and ad-
’ vanced Green’s functions is a linear combination of the three

Pauli matrices® Whenever the phase is constant, it can be

—DAV(GoVG) +IE[75,°G]+i ;{?—3,06} chosen such that it suffices to define
. v . éR(A):GR(A)" + ERA); ’
= _l(zineloG_Gozinel)v (6) 3 1
- . > ~AA_ _ o~ ARtS ARk Rx 2
whereA(t) =0 is taken for simplicity[ 75,G] is the commu- Gi=—7G 3=~ G 3t F ™ 7y ©)

tator of 73, and G, and{7;,G} is the anticommutator. A Assuming that the thickness of the interlaygris much
decomposition of the Green’s functions in Fourier harmonicssmaller than the coherence length in the interlayér,
can formally be introduced as = \/D/IE whereE is a characteristic energy at which the sys-
tem is probed, we can take the retarded Green’s function to
- . be much larger than its gradient. The double-barrier structure
G(va):n;x Gn(E) 8(w— o), (7) " under consideration is depicted in Fig. 1. Integrating both
sides of Eq.(8) over the interlayer thickness and barriers
whereG,(E) =G(E,nwg), as was done, for example in Ref. 9IV€s
20. The generation of higher order Fourier harmonics is a “R o AR “R o AR
manifestation of the nonlinearity of the device, prevalent, AD(G VG ply=gr = AD(GT VG ply=g-
e.g., in Eq.(6). Cwo . g g
+|n7d{73,Gn(E)}+|Ed[r3,Gn(E)]=O.
B. Retarded and advanced propagators

10
Equation(6) consists of an Usadel equation for the re- (10

tarded Green's function, the advanced Green’s function, and Zaitsev! derived effective boundary conditions for the

an equation containing the Keldysh Green’s function. Theguasiclassical Green’s function formalism. These were fur-

Usadel equation for the retarded Green's func@hin the  ther developed for diffusive scattering in the interlayer by

interlayer (taking the limit of A=0 and zero inelastic scat- Kupriyanov and Lukiqhe@? Using the Kupriyanov-

tering,iinm:O) in Fourier components reads buklchev boundary conditions for the retarded Green’s func-
ions,

—DhV(GRVGR), +inwy/2{ 73,GR(E)} +iE[ 73,GR(E)]

£v8(GRoVGR) ym0a==[GRGE Tn, (1)
=0, (8) |

where yg=Rg/pé&, p is the resistivity of the interlayer, and
where the index denotes theth harmonic. The self-energy Rg is the interface resistance, we obtain
terms in Eq.(6) can effectively be represented by a charac-
teristic inelastic scattering time,,, as derived by Larkin and
Ovchinnikov#° Taking the inelastic scattering to be time in-
dependent is of course a rough approximation, but suffices "R AR | AR
for the purposes of this paper. The self-energy terms have +2mkgTcd G™,2(Gg +Gg ) 1n=0, (12)
been neglected in Eq@8), which is justified as long as ~R ) _ _
#l7,,<ksT. Note that Eq.8) can be reduced to the time- WhereGSL'R are retarded functions in the left and right elec-

independent case for=0. Time dependence occurs if the trodes, respectively. The normalization condition @R in

Q0 AR ‘Ern AR
In7{TSlGn(E)}'YBd/§+|E[T3!Gn(E)]'}/Bd/§
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energy-space and decomposed into Fourier harmonics can be ST~ T T
found from the expressions of Appendix B: y

Ono= 2 érFT{1

m=—ow

n—m ~“R m
E+ 2 (O] anm E_E(DO f

Re G(E)

13

Equations(12) and (13) form a complete set of equations
from which the Fourier components &R can in principle
be determined. This recursive schemes reflects the fact, that
superconducting correlations can be induced over several
MAR cycles. Solving the set of equations is complicated by
the recurrent nature of the equations. The Fourier harmonics
are coupled to each other and have arguments that are shifted E[Ag
n Ie:r:g;?){he full set of equations, we can find back the qua- FIG. 2. Normalized density o_f states in the interla_yeTatO for
sistationary Matsubara case by keeping only the0 har- severgl_values of_ the suppression gzaramagqr The inset shows
monic of GR and then= =1 harmonics of R and neglecting the minigap that is present fofey=10" on a smaller scale.
energy shifts in the arguments. This provides a solution for
GR and FR that coincides with the analytical continuation
(w— —IiE) of the Matsubara solution at=7/2. The gen-
eral Matsubara solutions for double-barrier junctions with AZsing
ve12>>1 andd/¢{<1 were obtained in Ref. 26. In the limit of Imlg(B)eRv=T——= =5

A=0 the analytical continuatiom— —iE of this solution VAZ-E2VE?— AZcos(¢l2)
2:]%\%1;3 the Green's a functions &t=0 as a function of ¢, AccOs@l2)<E<As, while ImigE)=0 for E

N(E)

The supercurrent in the regime off<<1, is found to
ave a spectral density

(17

<Agcos(p/2) andE>Ag. This universal expression is inde-
pendent of the interlayer thickness, barrier height, and con-

3 EFs ( e . sv) . L :
b= . cos- +iy Si , tact dimensionality as long as the number of conduction
E e/ mkeTc+iGs 2 -2 channels is largé& The same expression was found in the
(14 case of ballistic interlayer transpSftThe spectral supercur-
G E Fo o rent is- nonzero only in the ra-ngbscos(go/2)< E<Ag, ie.
(E2—|<I>|2)' (|<I>|2—E2)’ there is a minigapA scos(p/2) in the spectrum of the An-

dreev bound states, see the inset of Fig. 3. On the other hand,
whereFg=Ag/(A3—E?) andGg=E/(E?—A2). The asym-  all states in the energy rangescos(/2) contribute to the
metry and effective suppression parameter are, respectivelgupercurrent. In long junctions, a similar behavior for the
density of states was found in Ref. 44 and for the current in
_ YB1T VB2 _d ye1ve2 15 Ref. 8. The contact is in the intermediate regime between a
Y et ver " E vert ves (9 short ballistic SNS weak link, with a bound state energy
Ascos(p/2) and a tunnel junction with a bound state energy
As an illustration to these retarded Green’s functions, the

density of states in the interlayéd,= ReG, is shown in Fig. 3 T T} S —
2. It can be seen that foy.;>1 the density of states is L o =m/2 It
determined by a minigap with a value of 2 | @5 _"*‘<<1U H
cosp/2)mkgT./verr. IN the coherent regiméof y.r<1 the | E” cos(/2)
gap in the density of states is given Aygos/2). The den- v 0 \ i
sity of states for intermediate values of the suppression pa- ) 00 05 10
rameter is characterized by a two-peak structure. These find- o E/hs

g

|45

ings coincide with the calculations of Bezughti al.™ in the

limiting case of a short interlayer.

C. Spectral supercurrent

Supercurrent is carried by states in the weak link and their
occupation is determined by a distribution function. The
supercurrent-carrying density of states, or spectral supercur-
rent Im ¢(E), can be determined froi®R and G* by

E/Ag

FIG. 3. Normalized spectral supercurrent density as a function

of energy for various values of the suppression parameter The

1 phase difference between the superconducting electrodes was fixed

Imlg= —Tr[}3(GR°VGR— GAOVGA)]_ (16) at <p=77j/2. The inset shows the spectral supercurrent in the coher-
8 ent regime ofyg4<1.
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As. Physically this is caused by the properties of the distrifurther rewritten as D;=(ReG)?+(ReF)2 and D,
bution of transparencies, which is a combination of open and- (ReG)?— (ImF)?. In obtaining Eqs.(20), use has been

closed channeltsee Ref. 2p . _ . made of the rewriting of th&°G — G°% term by Larkin and

In the incoherent regime ofyey>1, this universality — oychinnikov*® into a collision integral with characteristic in-
breaks down. The minigap in the spectrum of Andreev boungastic scattering time;, . A has been assumed to be negli-
states is now given by cag2) mkgTc/ver. Figure 3 shows giple for simplicity, but a superconducting gap in the inter-
the spectral supercurrent density for several values of thiyer can be incorporated into the model in a straightforward
suppression parameter. The s‘{gn chang&atAs hf}g also  way by keeping the terms in the Usadel equati@h that
been observed by Bezuglgt al™ and Heikkilaet al™ Go-  gepend om\. In the limit of slow time variations, a Fourier

ing beyond the approximationd<¢ and yg<1, it wWas  transform over the time difference provides the known mixed
shown by Schperset al*’ for ballistic junctions that low- representation of the kinetic equatidhs

energy states are gradually filled in for larger interlayer
thickness and by a larger barrier transparency.

d
DDvafL+D|m|3VfT_R@( Ti7r|l+& (fL_fO):Ou
D. Kinetic equations (21

The energy distribution functions, that determine the oc- DD1V2f 1+ DIml Vf, — ReG
cupation of spectral functions, can be determined from the T -

kinetic equations. From the matrix normalization condltlonWhich follows directly from Eq.(20) for the lowest Fourier

_ . . . o s K
G°AGK_A1A the upper ('?(ht component 'mP"eS thetG harmonic. The expressions for the supercurrent and dissipa-
+G"G"=0. Hence,G" can be parametrized as tive current components can be deri¥efiom Eq. (4)

Ti‘nl+a fr=0,

K— AR f_foRA
GT =GRt~ 1eGh (18 |S=Lf dEf (E)ImlIg(E), (22)
Furthermore, it was shown by Schmid and Sefi@nd Lar- 2eRy
kin and Ovchinnikof® that f can be chosen to be diagonal. 1
We will adopt the notation Iszf dED(E)VfL(E). (23

f=f 1+f7s, (199 What remains to be derived is a proper set of time-dependent

o . boundary conditions for the kinetic equations.
wheref, andf; are those parts of the distribution function y g

that are respectively even and odd in energy. Therefore they
are named longitudinal and transverse energy distribution
function respectively. The functions can be identified with The Kupriyanov-Lukichev boundary conditididor the
energy and particle flo®? Physically, a deviation of, from  quasiclassical Green’s functions can in general be written as
equilibrium is associated with a different effective tempera-

E. Time-dependent boundary conditions

ture and a deviation off; from equilibrium with a chemical - oi“ -SR-S
potential ~ shift. In equilibrium, fro=0 and f g Y8EGe R G=60G1~ GG, (24
=tanhE&/2kgT).

Putting Eqs(18) and(19) into the Keldysh component of V\{hereGl a“?' G_denote the Green's fgnqtions at the tWO,
the Usadel equatiof2) and by making use of the Usadel S|des_ of th.e first interface. From the definition of the (“?r_eens
equations for the retarded and advanced Green'’s functiorﬁ?ncuons in Keldysh space, Eq1), a boundary condition

finally the kinetic equations for the Fourier componentg,of ~c@n be written for each matrix element. In Appendix A, this
andfr can be written as set of boundary conditions is rewritten into

1 yob] (1 GREA) L1+ (75 BRrsGA)
(DLoVZfL)n+(|m|SonT)n:%(niwow»r;nl) B dx b3 ¥ Jdx T

K [GRo(f, — fosng) =[GR(GF-GD ~(GF-GNGAI(fL1— )

—(fL—f0810) G ns +[GR(GF73—73G1) — (G735~ 73G1) GA]
. (20) X (fr1—f1), (25
(DTOVZfT)n+(ImISOVfL)n:%(nin—'—ﬁTi;l) where all the products have to be regarded as time convolu-
tions andf 14 are the distribution functions in the respec-
X (GRof1—f10GA),, tive reservoir.

_ ) o - The Green’s functions become time dependent by apply-
with the generalized transverse and longitudinal diffusion COing a voltage over the interface. In the absence of voltage,
efficients being D.=Tr(1-73GR73G") and D =Tr(1  the Green’s functions in the electrodes only depend on the
—GRG*). With the parametrization of Eq9) this can be time difference since equilibrium is assumed. The potential
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can be introduced in each electrode by a gauge Note thatD, =(ReG)2—(ImF)2=0 for energies smaller
transformatioft* of the Green’s function in the electrodes  than the minigap in the interlayer. Hence, for energies at
which D =0, boundary condition(29) is replaced byf

GRA(t,t) =St GRM(t—t")Sht'), (26)  =f,. This physically means that the system does not con-
- St , duct heat inside the gap and that the distribution in the gap is
whereS(t) andS'(t’) are given by controlled by coupling to some external heat bath, e.g.,
ieVi/h through the substrate, ambt through the superconducting
e 0 leads
S(t)= —ieVth | eaas. . . . .
0 e Each term in the boundary condition contains time con-

volutions. With the aid of the expansion of the Green’s func-

eievt'/h tions in Fourier harmonics and the expressions of Appendix
St = S (27 B for the time convolutions of double and triple products, the
0 e ' convolutions can be worked out for each term. The left-hand

Volkov and Klapwij3performed a gauge transformation of side of Eq.(28) is, for example,

the interlayer Green's functions, which works only in the d "

limit d>¢ because of the small coupling between the elec- DTOYBgd_fT: > f D1 n(E+N' 00/2) ygé
trodes in this case, which allows one to neglect the interfer- X nn’ J-*

ence terms in the interlayer leading to a local time depen-

dence. d NP ’ .
. . ~ A —f AE—nwn/2 e|E(t t )/hel[(n+n )2h] wo(t+t )dE.
By performing the gauge transformation f&f and G} dx T (ETNwol2)
and by taking the trace from E@25), one obtains the first (30

boundary condition in time representation. The second €quarq gine and cosine dependencies in the boundary conditions
tion is obtained by taking the trace after multiplying left- and 5 ,se additional voltage shifts as well as coupling to higher

right-hand sides of E¢25) by 7. This results in harmonics, which can be seen, for example, in the term

fLO[ReGSORQOiSiI’\(t—t’)]

d eV ,
DTyBgE(fT: R£1R£|S| 7(t_t)

=> f dEf_ o(E+N' wo/2)REG,, (E—Nwy/2)
n,n’

eV

« @lE" (t=t)hgil(n+n")/2h] wo(t+1)

ev

7 1 n"—n—-1
XE ReGg| E+ —5 @
eV
+ReFlRchos{7(t+t’) , (28) n—n+1
+ReGg| E+ ————wo| |. (32)
DLyBg%sz{ReGlRcho{%/(t—t’)} In principle, the set of kinetic equation20) together with
the boundary conditions Eq&28) and(29), and expressions

for the time convolutions, such as E0) and Eq.(31), now
(fLo—fL) provide a complete set of equations to solve the energy dis-
tribution functions as function of voltage. However, the cou-
eV pling to higher harmonics and energy shifts within the func-
- fT[ ReGlReGisir{7(t—t')} tions themselves make solving the equations cumbersome. In
principle, a solution should crossover to the solutions as
found by the MAR approadfin the limit of y.<1. In Sec.
, (29 Il an adiabatic approximation will be developed in order to
solve the kinetic equations f@V<Ag and a larger suppres-
where all products are time convolutions and use has beegion parameter.
made of the fact thaf{;=0, since the electrodes are as-
sumed to be in internal equilibrium. The energy distribution I1l. ADIABATIC DYNAMICS
functions are not only coupled through the kinetic equations
(20), but through the boundary conditions as well.

At the second interface a similar set of boundary condi- In order to simplify the time dependencies, an adiabatic
tions can be derived, which can be obtained from E88  approximation can be made. When the voltage is small, the
and(29) by replacingG; andF; by G, andF,, respectively, phase oscillates slowly and can even be considered quasista-
and by multiplying the right-hand side of Eq28) and(29)  tionary. In this case, we only need to keep the time depen-
by —1. dence in expressions that contain the phase, but can neglect

eV
— ImFllcho{T(Ht’)

eV
+ReF 1 ImFsin T(Ht/)

A. Adiabatic approximation
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all other time dependencies. Consequently, the time convdenown adiabatic equations in the mixed representation as

lutions become simple products and the energy shifts can beerived by Larkin and Ovchinnika?¥? In the absence of in-

neglected. Therefore, this approximation is called adiabaticelastic scattering, the equations further simplify to
A formal derivation of the parameter regime in which the

adiabatic approximation can be used, is based on the time d2f; df,

dependence in Eq$28) and (29). The quasiparticle current DT(E)W(E'X)HmIS(E)R(E*x)zo’

is determined by the left-hand side of E8), namely,

Dtygédfr/dx. It will be shown in this section that the right- d2f df

hand side of this boundary condition in the adiabatic limit is D,(E) — (E,x) + Iml §(E) =— (E,x) =0.

equal to thef terms in Eq.(28). Hence, deviations from the dx? dx

adiabatic approximation in the quasiparticle current are onlyl_h . ,
. ) erefore, Eqs(33) and (36) provide a set of equations to
to be expected when the terms proportional tdn Eq. (28) . _describe the time-dependent transport in double-barrier junc-

are not negligible. The first of these terms s : L :
f ReG,ReGisimet—t')/A], which can be neglected for gomn; colig(;ellmlt of a large suppression parameter and a

eV<Ag. The second term i, ImFReFsiMeMt+t')/%],
which is nonzero only due to the looplike construction with
Eqg. (29), in which the terms IR, and Ré& are shiftede /2

in energy every cycle, making their overlap nonzero after From the expression for the dissipative current component
approximatelyAs/eV cycles. For large suppression param-in Eq. (23), and by solving Eq:33) and(36) with an ansatz
eters, RE~ y+ . Hence, smallness of this term can now befr =aj; X*+by X+cy,, it is obtained that

formulated as (Ier)“s'V<1. Combining the conditions,

(36)

B. Dissipative current

the conclusion is reached that the adiabatic approximation is I (t)= i ” d_E YB1t VB2 f 37)
valid wheneV<Ag and yg>1. ap eRyJ-«2 vya1 vz 'O

In this case, the phaseg, , can be introduced by the My My
parametrization

This solution is obtained in the limit of no inelastic scatter-
R G?z FTzeinz ing. The effects of energy relaxation in the interlayer will be
GR= o . (32)  discussed in Sec. IV B. It follows from Eq37) that the
; FRegixiz —gR o .
1€ 12 quasiparticle current has in general a phase-dependent con-

No additional gauge transformations have to be performed iffibution through the coefficients! 1, ,. The current is there-
the boundary conditions. Hence, we can use the parametriore time dependent since the phase difference is given by
zation of Eq.(32) directly in the boundary conditiof25).  ¢=2eV¥#. The dc component is then determined by aver-
The first boundary condition is then found by taking the trace2ging over time.

of Eq. (25). The second is found by taking the trace after When one of the superconducting electrodes is replaced

multiplying with 7. With Eq. (32) and after some rewriting, Py @ normal metal, the expressions fdr | simplify, since
this gives Fn=0. By putting voltage to zero in the superconductor, it

can be shown that the expression for the quasiparticle cur-
d B rent, Eqg.(37) with M;,=ReG, coincides with the known
81,261 fr(0d) = =My £ 17(0.d) + fro], results of the SININ junction of Volkowet al?® The addi-
(33) tional termm(E)=d " fdx/M+(E,x) in Ref. 29 is neglected
d in our case, since the term is small as comparegigtiv 1.
yBl,gDL&fL(O,dF =M AT(0d)—f o], As a measure of the subgap conductance of a double-
barrier Josephson junction, the conductancee¥dtAg is
where calculated and shown in Fig. 4 as a function of temperature
in the limit of y.#>1. The inset of Fig. 4 shows the conduc-
1 E+eVi2 1 E-eVi2 tance ateV=Ag as a function of the inverse suppression
2kgT tztanhw, (34 parameter. It can be seen that the conductance is enhanced by
o ) . a decrease .. Physically, this corresponds to the open-
are the distribution functions in the leads adyi,  ing of Andreev channels due to the termPR&eF in M.
=ReGg ReG+ReFsReFcosfi—x2), ML1,,=ReGs [ReG  For y,4>10, for which the model of this section is a good
—ImFgImFcos(y;—xo), where x1—x>,=¢/2=eVt in the  approximation, the conductance is found to be approximately
case of symmetric barriers. He@andF are given by Eq. proportional toy.. This proportionality will be used in
(14) and Sec. V to predict an intrinsic shunt in high-double-barrier
Josephson junctions.
G - ExeV/2 E Ag High voltage bias.n the regime of a large voltageV
SR \/ﬁ ST hZ2_r2° >Ag, the time dependencies in the electrodes become de-
(Exevi2—As As—E coupled and the current in an SINIS junction can be seen as
As can be seen from here, also using Sec. Il D, the kinetithe summation of the current in an SININ’ junction and an
equations in the quasistationary limit coincide with theN’INIS junction. In this case, the relevant functiobr in

(39
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020 Py L. — diffusion coefficient depends on the phase difference, as is
N known, e.g., from Andreev interferometéfswe would like
to calculate
0.15
S I15(V) —1 <ff (E,t)Iml (Et)dE> (39
S = L ’ m S ’ y
%‘ 0.10 2eRy t
© where the brackets denote time averaging. It can be seen that
0.05 this expression explicitly depends on the spectral supercur-
rent, which could, for example, be suppressed by a magnetic
field. Therefore, this current contribution is true supercurrent
0.00 in the presence of an applied voltage.

00 01 02 03 04 05 Since the time-dependent perturbation fof is much

kpT/Ag smaller tharf, kinetic equation$21) can be rewritten in the

) . adiabatic form like Egs(36), now including inelastic scat-
FIG. 4. Normalized conductance aV=Ag as a function of

temperaturgnormalized toAg) for y.=1. The inset shows the tering,
normalized conductance a&V=Ag as a function of Iy at d2f df
kgT/As=0.5. DT—T-I- Iml S_L = 5*1fT,
dXZ dx
Eq. (37) simplify, and the presence of excess and deficit cur- (39
rent can be calculated. Figure 5 shows the resulting depen- d?f, df;
dence of the excess and deficit current on the asymmetry DLW+Im|8a=571(fL_f0)y

parameter, for several values of the suppression parameter.
Note that the decoupling into SININ" and N'INIS junctions, where, 5 is introduced ass~1=N¢2/Dry,,. Under the con-

ateV>Agis valid for all values ofyeq. The limiting case of  gitions of the adiabatic approximation, we can use again
a deficit currenelye Ry =4A¢/3 for the symmetric limit and  poundary conditions(33), and, with ansatz solution$;
’yeff>1 coincides with the findings of ZaitS@Vand \olkov :a1X2+ b1X+ (o) and fL:a2X2+ b2X+ Cy, this provides us
et al? The excess curremtl,,Ry=1.0%¢ for y.4<1 coin-  with the solution
cides with the results of MAR calculatioRs.

C. Nonequilibrium supercurrent at finite voltage fL=To= veriml SygDt fro. (40

From Eq.(23) and a solution of the kinetic equations, the \yhere

supercurrent can be determined as a function of voltage. In
most tunnel junctions and wgak links, t.he time dependence 2M 1Mo+ 2760 My
of the spectral supercurrent is harmonic and, by averaging M= .
over time, the supercurrent becomes zero at a finite voltage. (My1+ M+ 2966 (Mg + Mo+ 2746 )
However, due to the additional time dependencd af the (41)
product off, and Inls does not necessarily have to be har-From Egs.(40) and (41) it can be seen that in the limit of
monic, and a nonzero time-averaged supercurrent can exist gfrong inelastic scatteringg;,—0, f, —f, will be propor-
a finite voltage. Physically, the time-dependencé 0brigi-  tional to r;, and therefore equilibrium is restored.
nates from the fact that, due to the proximity effect, the heat The nonequilibrium correction tf) is obtained within the
adiabatic approximation. Therefore, we assume that time de-
pendence only comes into the final expressions via the phase
factor in the spectral supercurrent densityl §min the case
of symmetric barriers, I/l g averaged over time is equal to
the average of sine-squared, which is just a factor 1/2. The
supercurrent contribution can therefore be written as

1 w
|s=m’)’eﬁf0 D1 (Imlg)*froMdE. (42)

In order to perform the integral some smearing of theglm
divergency has to be assumed. Physical reasons for this are
always present, like a small amount of inelastic scattering.
An inelastic scattering termy can be taken into account in
the retarded part of the Usadel equatidhbuyt in the limit of

FIG. 5. Excess and deficit current as a function of asymmetnyittle inelastic scatteringy<<kgT.g, the scattering term can
for several values of the suppression parameter. be presented in the solutions by transforming the enErtyy

= (’731 "732)/(731 +7Bz)
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0.0015

quasiparticle current appears and deviations from equilib-
rium should also occur @& <Ag. The study of this cross-
0.0003 - r=10"71 over, however, is beyond the scope of this paper.
0.0002 | - The nonequilibrium supercurrent at a certain voltage is
approximately two order of magnitude smaller than the dc
supercurrent at zero voltage, but is comparable with the qua-
siparticle current at the same voltage. The latter conclusion is
based on the assumption that inelastic scattering is negli-
gible, but we will see in Sec. IV that energy relaxation in the
interlayer increases the subgap quasiparticle current. There-
fore we can conclude that the nonequilibrium supercurrent
can be present in double-barrier junctions, but that under
realistic junction parameter values, the contribution to the
et total current is minor. Note, that the nonequilibrium super-
FIG. 6. Nonequilibrium averaged supercurrent at a finite voltageCurrent n the considered regime 1 proportional t.o the_ square
bias €V=0.1Ag) at kgT=0.2A5 and a small inelastic scattering of the sine of the phase difference over the junctitg,
rate y=10"3Ag as a function of the suppression parameter. The™ sinf¢. This effect can give rise to the occurence of half-
inset shows the supercurrent as a function of bias voltage Bt~ INt€ger Shapiro steps in the' characteristics when the junc-
=0.2A¢ for a fixed suppression parametgl . tion is irradiated by microwave®:>!

0.0004 . .

0.0010 |-

elgRy/Ag

elRy/Ag

0.0005 |-

0.0000 Y S
10 100 1000

E+iy. In Sec. V, realistic values of the inelastic scattering IV. INELASTIC SCATTERING
parameter and the suppression parameter will be derived.
From these values it can be concluded thgté <1 in
most of the practical cases. In this limit, the only contribu-
tion to the supercurrent comes froB>Ag, the spectral
supercurrent being zero below the minigap dhteing zero
between the minigap anfig. The resulting supercurrent in
this limit is shown in Fig. 6 as a function of the suppression
parameter and in the inset as a function of voltage.

The physics of this effect is similar to the physics of the
nonequilibrium supercurrent first considered by Lempitskii ! . ; . ) )
for a long diffusive SNS junction without potential barriers IN the interlayer is proportional D ~~, whereD is the trans-

at the NS interfaces. The mechanism is the conversion dfar€ncy of each barrier. For a transparency of the order of

76 . . . . .
quasiparticle current into supercurrent inside the junctionl0 » thetime offlight in the interlayer is for example of the

formally described by the coupling term Igu f+/dx in Eq. order OfT.= d/DvF='O.5 ns, for a th|ckness5gf about 10 nm
(39). An alternative explanation for this mechanism has bee/®"d & typical Fermi velocity of 1810° mis: _

given in terms of thermoelectricity in Ref. 49. However, N most double-barrier Josephson junctions Al is used as
quantitative differences occur between the cases of long ar@? Intérlayer material, and therefore the inelastic scattering
short junctions. In a long SNS junction witts ¢ the stron-  Ume in Al should be considered. Kaplat al™” estimated an
gest deviations of the distribution functidi from equilib- inelastic scattering time in bulk Al of 400 ns which is much

rium occur at the subgap energy range, at energies of thl@rger than 0.5 ns. quevgr, magnetoresstance and micro-
order of the Thouless enerdyD/d2. In the case of MAR, an Wave measurements in thin films of ARefs. 54 and 56
additional nonequilibrium correction . appears, as shown showed that the_ inelastic scattering time in thin Al films is
by Pierreet al,*® which is beyond the present adiabatic ap_orders of magnitudes _sm.aller than in bulk, namely, of the
proach in which voltage and interface transparencies ar rder of 0'? 0 1.0 ns n films .Of a few to 10-nm thickness.
small so that the MAR is suppressed. At subgap energies th hgrefore, in the modelmg Of. tlme-.depen.dent trangport prop-
excitation of the symmetric mode describedfhy generated erties of doqble-barrler junctions, _melastlc scattering, or en-
by the quasiparticle current, cannot diffuse out of the junC_ergy re_laxat|0n, h_as to be taken into account. The inelastic
tion since the corresponding diffusion const@nt vanishes scattering comprises both electron-phonon and electron-
in the S electrodes. On the other hand, in SINIS junctions?lec”c’n scattering.
the symmetric mode at low bias is excited onlyEt-Ag
since the quasiparticle current vanishes in the energy range
E<Ag due to the presence of tunnel barriers. Hence, devia- In this section, a microscopic model will be derived for
tions of f from equilibrium occur only aE>Ag. Since the the quasiparticle current as function of voltage in double-
diffusion constant in the S electrodBs <1 atE>Ag, the  barrier Josephson junctions with low-transparent barriers. It
excitations atE>Ag are partially trapped at these energies,will be shown that the results coincide with the phenomeno-
though the magnitude of the effect in SINIS junctions islogical model by Heslinga and Klapwif® who derived their
smaller than in SNS junctions. With a decreasing barriemodel by matching the population and extraction rates of the
height in SINIS junctions, an Andreev contribution to the quasiparticles in the interlayer.

In many mesoscopic systems and weak links, the time of
flight of a quasiparticle through a normal metal or supercon-
ducting layer is much shorter than the characteristic inelastic
scattering time in the specific material. Hence, inelastic scat-
tering in mesoscopic systems and weak links is usually ne-
glected. However, in double-barrier junctions, the time of
flight can be large. Because of the normal reflections at the
interfaces, a quasiparticle on average traverses the interlayer
many times. The time that a quasiparticle effectively spends

A. Derivation of a microscopic model
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In this section, the assumption will be made tha E
>1. In this approximation, the proximity effect can be ne- Q)
glected, i.eFRA=0. Furthermore, the spectral supercurrent V2 N(E)fy(E)
Imls(E,t)=0, ReG(E)=1, andD, =D=1. In this case, 24] 74
none of the quantities explicitly depends on time. Then, the j % @ F oo ]M&

kinetic Egs.(20) can be simplified to = 7?

FIG. 7. Semiconductor-diagram representation of tunnel and
scattering rates in a double-barrier junction at bias voltaye

2
DTinﬁ_sz(E-X)_[fL(EaX)_ fo(E)1=0,
dXx

22 (43) =Ag. The energy conserving processgsand (ii) are, in the case
f inelasti ttering, I ted b
Drin—sz(E,x) —f1(E,x) =0, of inelastic scattering, complemented by procgiss.
wherefy(E) =tanh@2T) andD is the diffusion constant in blzi RN, —R.N_+(R_—foN_)/T'7 @7
the interlayer. Use is made of the fact thig,(E)=0 in veé N, +1M 7,

equilibrium. The kinetic equations are decoupled in this case,
but f; andf, are coupled through the boundary conditions. where I' 1= yedé&/Di=e’N(0)Rgd/% is the tunneling
The boundary conditions can either be obtained by siminjection rate into the normal metal interlay@&(0) the un-
plifying the relevant terms of the expressions that contain alhormalized density of states in the interlayer aRrgl the
harmonics, such as Eq&0) and (31), or by starting from  specific barrier resistance. Using the fact that density of
the time-dependent boundary conditiof&qgs. (28) and  states functions are symmetric in energy dgds asymmet-
(29)]. In the latter case, the transformation to energy space igc in energy, R_—fyN_) can be simplified to 2Re;(E
straightforward. The right-hand sides of E¢28) and (29) +eV2) fo(E+eVI2)—fy(E)] and R_N,—R,/N_
only contain terms that depend on time difference since= 2ReG,(E+eV/I2)ReG(E—eV/2)[ fo(E+eVI2)—fy((E
FRA=0, e.g., —eV/2))]. With on/2yg=€?N(0)D/yg=Rg', the expres-
sion for the quasiparticle current finally becomes

. eV(t—ty)
R{;l(t_tl)‘”S|n—°Rd3(tl_t,)°fL(t1_tl)

h 2 o)
|=—-| dEReG,(E+eV/2)
. ’ eRN —
=f dEe Bt ReG(E)f (E)G_, (44)
eV eV
where G_=ReG,(E+eV/2)+ReG,(E—eV/2). The left- ReGy| E— = |F_+|fo| E+ 5| ~To(E) [/I'7in
hand side of Eq(28) becomes X )
a(28) G, +1 7,
(48)

J J ) ,
DT’YBgo-,_XfT(tvt,):')’Bégf dEe B )DT(E)fT(E)-
(45  whereF =fo(E+eVIi2)—fo(E—eV/2) and G, =ReG,(E
+eV/2)+ReG,(E—eV/2). This expression is equivalent to

Hence, together with Re=1, finally the boundary condi- the findings of Heslinga and Klapwif, in the limit of

tions read ReG=1, who derived a model by equating the population
P and extraction rates in the interlayer. Zaitsev's results for the
yaé—fr(E,=d/2)= 7 f1(E, = d/2)N, SININ junction in the limit of no energy relaxatiéhcoin-
2 cide with our findings as well. The equivalence of a mesos-
—f(E,+dI2N_+R_, copic or phen_omenological qpproach and the more rigorous
(46) Green’s functions treatment is shown by Argaffao hold
P for the equations for current. Here we have proven that the
yngfL(E,id/Z):If,_(E,id/Z)N+ final expressionEq. (48)] also follows from the Green’s
function approach, using the appropriate boundary condi-
—fr(E,=d/2N_*=R_, tions.
where N. =ReG;(E+eV/2)=ReG,(E—eV/2) in the su- ) ) _ _
perconductors and R. = ReG;(E+eV/2)X fo(E+eV/2) B. Influence of inelastic scattering on transport properties
+ReG(E—eVI2)fo(E—eV/2). The kinetic equations pro- Examples of possible tunneling processes are indicated in

vide that ¢c;=2a,;Dr,=2a,6 for the ansatzf=a;x? Fig. 7. In one of the processes a quasiparticle is inelastically
+b;x+c, andf, =a,x?+b,x+c,. Using boundary condi- scattered in the interlayer. Equati@d8) coincides in the

tions (46) and neglecting terms proportional @3, the solu-  limit of strong inelastic scattering (r;,=0) with the known
tion can be simply found. The quasiparticle current is giverresult for two SIN tunnel junctions in series. In the absence
by Eq. (23), wheredf;/dx=b,, andb; is given by of inelastic scattering, Eq48) reduces to
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FIG. 8. 1V characteristics akgT/As=0.25 andy,r>1 on the FIG. 10. ExperimentalV curves(solid lineg at 4.2 K (i) and
basis of Eq.(48) for several values of the inelastic scattering pa- 1 g K (i) together with theoretical fitédashed lineswith T'7;,
rameted’ 7;,, . The inset shows the subgap conductanea\at A as =0.1 and 0.3, respectively.

a function ofl' 7, . ’
V. APPLICATION: THE NATURE OF THE INTRINSIC
© 2dE eV eV\ F_ SHUNT
| = —ReG; E+7 ReG, E—7 G (49
—=€Ry + The resistively and capacitively shunted junction model

. - shows how a sinusoidal supercurrent-phase relation, a linear
Figure 8 shows both limiting cases as welllascurves for — qyasiparticle current, and a displacement current determine
intermediate values of the scattering parameter, taken in thge shape of the enti®/ characteristic of a Josephson junc-
present limit ofye>1. It can be seen in the inset of Fig. 8, (ion. The model can also be applied to an unshunted junction,

thqt inelastic_ scatte_zring enhances _the s_ubgap conducta_nqﬁlt then the subgap resistarRe, appears in the expression
This effect will be discussed in section V in order to explain¢y, the Stewart-McCumber parameter

the large subgap conductance observed in double-barrier
junction measurements. (1.R\)?C [ Rgg)?
Equation(49) gives a deficit current oély.{Ry=4A4/3 Be= WT(R—) .
for eV>Ag, which coincides with the findings of Sec. Il B. cro N
In analogy with the approach of Sec. IIl B to calculate excesgvhere C is the capacitance of the junction adey(=2.07
and deficit currents by summing the respective contributions< 10~ > Wb) the flux quantum. LikharéV showed that the
from SININ and NINIS junctions, the same can be calculated€lation betweerB¢ and the presence of hysteresis depends
by including inelastic scattering as well. Figure 9 shows theon the model that is used to describe the junctiew., the
resulting crossover from excess to deficit current as functiomonlinear resistive model, with different dependencies for the
of the suppression parameter for several values of the inelasubgap conductance, and the tunnel junction microscopic
tic scattering parameter. Fbrrj,<10~* only a small deficit mode), but roughly speaking, it can be said thét>1 cor-
current is predicted aV>Ag. However, at moderate values responds to hysteretitv characteristics. Hysteresis refers
of V, i.e.,, 2As<eV<4Ag, a considerable deficit current is here to the existence of two branches in thecurve, one

still present, as can be seen, for example, in Fig. 8. going from the critical current; to the voltage state, and one
going back at the return currentg<I.) from the voltage

B state to the state at=0.

The capacitance of a double-barrier junction is not known
a priori. In Ref. 58 a set of Nb/Al double-barrier Josephson
junctions was fabricated in order to make superconducting
guantum interference devic€SQUIDS. From resonances in
the SQUID washerC was determined to be 0.015 pkh?,
corresponding to the capacitance of two SIS junctions in
series> It is assumed that this value is only weakly depend-
ing on the transparency of the barrier. The dependendg of
andRy on the junction parameters, suchmyag, follow from
the modeling of the stationary properties in Ref. 26. The
subgap conductance as function of the suppression parameter
is determined in Sec. Il B.

First, the regime of junctions withy.s=1 will be dis-

FIG. 9. Excess and deficit current as function of the suppressiogussed. For this purpose, low critical current density Nb/Al
parameter for several values of the inelastic scattering parametélouble-barrier junctions were fabricated according to the
7. process of Ref. 58. Figure 10 shows a typical measiived

(50

Veft
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characteristic, together with dV curve from the nonequi-
librium model of Sec. IV B, where inelastic scattering is
taken into account. At 4.2 K, the experimental and theoreti-
cal curves are very much alike, taking into account the fact
that only one free parameter was used to fit, namiely, .
From

I'r :WTcSkB m
" Yeff h’

and the fittedl' 7;,=0.1 andy.s=2x10*> (which was ob-
tained from fitting the critical current temperature depen- Y IR R R T
dence, an inelastic scattering time,,= 0.3 ns is obtained in 0.1 1o 100
the Al interlayers. At 1.6 K, a magnetic field was used to Jo [Afem’]
suppress the supercurrent in order to resolve the subgap qua-
siparticle conductance. The deviation of the fit from the X0
periment around &, is due to the nonequilibrium enhance-
ment of the gap in the interlayer, as described in Ref. 59are redistributed over energy, allowing some quasiparticles to
which can be included in the model by incorporatifig, . enter the other electrode, which results in an enhanced con-

(51)

1000

FIG. 11. Expected3: as a function of critical current density
m the inelastic scattering modél=4.2 K.

However, the good fit well below &y allows for the ex-
traction of r;,,=0.9 ns at 1.6 K.

ductance, as illustrated in Fig. 7. The amount of quasiparti-
cles that is scattered inelastically increases for decreasing

ments by Santanaret al,>® who found 7,,=0.2—-1.0 ns in

10-nm Al films at 4.2 K, and Van Sost al>* who found
Tin=0.8-0.9 ns in 7-nm Al films afl;,,. Our values of

7,n=0.9 ns at 1.6 K and 0.3 ns at 4.2 K indicate a scaling

with T~ rather tharT ~ 3, which was found and discussed as
well by Santananet al.>® Note that the values for the inelas-
tic scattering are much smaller thaikgT, which means that
the stationary properties are not influenced#y. Further-
more, from these values it is seen thats '>1 as long as
Yer=10%, which was used in order to obtain Fig. 6.

particle in the interlayer is then increased. For strong inelas-
tic scattering, the double-barrier junction can be regarded as
a series connection of SIN and NIS junctions, where the
energy distibution function in the interlayer is the equilib-
rium Fermi functionf,= tanhE/2kgT). Here it should be
noted that the assumption is made that the inelastic scattering
is dominated by electron-phonon interactions, and that there
is coupling between the interlayer and a heat bath. It is
known'8 that, in the contrary nonadiabatic limit of MAR and
strong electron-electron interactions, the energy distribution
in the interlayer is given by the Fermi function at a tempera-

As a measure of the subgap conductance, the theoreticaliyire kg, T=A+eV.

expected normalized conductancee®= A can be found in
Fig. 8, as function of the inelastic scattering paramgtey, .

In order to understand the intrinsic shunt of all Al-based
double-barrier junctions, the regime of high-junctions

It can be seen that the subgap resistance in the limit of zertiypically larger than 100 A/cA) should be considered as

inelastic scattering,,— ) is only determined by the tem- well. The second contribution to the subgap conductance is
perature. The conductance in this limit is therefore called thelue to the Andreev reflection processes at the two
thermal contribution. The relation between subgap resistancguperconductor-normal metal interfaces, which was formally

and y« is now known for a fixed value of;, sincel is
given by kg T/ yef -
The dependence dfRy on vy is known from the Mat-

introduced by the term RE()Re(Fs). The Andreev channels
open at a high transparency of the interface barriers. In first
order, this contribution is independent of temperature, but it

subara modeling of the stationary properties of doublegepe”ds on the suppression parameter, which is shown in the

barrier junctiong® Together with the definition ofy., it
follows that

_ e’kZ mkgT.d
22 U E Vet ’

-1
N

(52

where the parameter values can be takemw gas 1.5x 10°
m/s?? d=6 nm, andTy,=9.2 K. Putting these theoretical

inset of Fig. 4 for a fixed temperature. For the practical range
of parameters, this means that the contribution is inversely
proportional toys. Figure 12 shows the resulting hysteresis
as function of the critical current density. Figure 12 predicts
that nonhysteretic double-barrier junctions can be obtained
with critical current densities of the order of 10 kA/érand
higher. In order to make a comparison with SIS junctions, a
similar curve has been calculated based on(&@). and plot-

ted in Fig. 13. In this calculation it was assumed tieat

dependencies together with the experimentally determinee:3.0uF/cm?, 1.Ry=2.0 mV, andRs4= 2Ry . A bigger sub-

parameters into Eq50), providesfB as function of the criti-
cal current density for junctions with.>1, see Fig. 11.

gap resistance will shift the SIS curve even more to the right.
Summing up all contributions to the subgap conductance

The shunting behavior can physically be explained as folprovides the theoretical curve in Fig. 13 for several values of
lows. A direct transfer process of quasiparticles from oner,, and d=6 nm, where Zappe's equatifhwas used to
electrode to the other is prohibited when the quasiparticlealculate the ratio of return and critical currdpt/I. from
energy falls within the gap of the other electrode. However,8.. The summation is performed in a straightforward way,
by scattering inelastically in the interlayer, the quasiparticlesince the contributions due to inelastic scattering and the
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4

— VI. CONCLUSION

SINIS T Time-dependent and nonequilibrium transport properties
of SINIS junctions have been studied by means of a micro-
scopic Green'’s function approach. The kinetic equations for
the longitudinal and transverse energy distribution functions
are derived from the Keldysh-Usadel equation. The appropri-
ate boundary conditions are derived by starting from the

Kupriyanov-Lukichev boundary conditions and by applying
eal e gauge transformations in the electrodes. The resulting set of
;‘;‘: 1000 equations has a recurrent nature, in terms of coupling of
0 ot v T i i Green’s functions to higher harmonics as well as to functions

1 10 100 1000 10000 . . . .

9 with shifted energy arguments. This lays out a theoretical

Jo [Afom] framework to microscopically study time-dependent prob-

FIG. 12. Theoretical model foBc as function ofJ, (and as €MS in superconducting — normal metal devices.
function of s in the insel, based on the contribution of Andreev e apply this formalism in order to develop a theory of
channels to the subgap conductance in higiunctions atT=4.2  the subgap conductance of SINIS junctions. This conduc-
K, in comparison with the hysteresis of SIS junctions. tance is a very favorable feature for applications but so far
not understood on a microscopic level. In the adiabatic limit

opening of Andreev channels do not overlap, i.e., they occu?f a jmall (\j/olta_ge a_nd ? Iargz tshuppresst|_0n parame’ier,dt?e
in separate regimes of the suppression parameter. ime dependencies simplify and the equations are solved to

An increase inr, is seen to increase the hysteresis anadetermine the dissipative current in double-barrier Josephson
shift the maximurlr? hysteresis to lower values &f. A junctions. Known limiting cases, such as the SININ’ junc-

thicker interlayer will both decreasg. as well as shift the tiqn, are reprod_uced. Excess and dgficit current are deter-
curve upward, sinc€ ;, is larger in this case. A decrease in mined as function of the suppression parameter a”?' the
temperature rapidly enhances the hysteresis, since both tR§YMmetry between the barriers. Excess current as high as
thermal contribution to the subgap conductance decreases 8&xRn=1.0%s can exist in double-barrier junctions in the
well as the contribution of inelastic scattering, singein- ~ Symmetric case folyer<1, and maximum deficit current is
creases with temperature. This explains the strong influenc&ached in the symmetric case fpg>1. The subgap con-
of temperature on hysteresis as observed in experimentguctance enhancement by decreasijng is caused by the
which is stronger than could be expected from an increase iapening of Andreev channels.
I alone. It is found that the time-dependent nonequilibrium contri-
Observed experimentdlz/l. values are also shown in bution to the energy distribution function gives rise to a non-
Fig. 13, and it can be concluded that the experiments are nowero averaged supercurrent in the presence of a voltage bias.
qualitatively and quantitatively very well explained by the This effect should be observable in double-barrier junction
model in the sense that both the nonmonotonic hysteresisxperiments.
dependence on critical current density as well as the actual |n contrast to most studied mesoscopic systems, inelastic
hysteresis values are obtained. scattering in the interlayer of double-barrier junctions can
have a strong influence on the electronic transport even in
very short devices. A microscopic derivation of the depen-
dence of the transport properties on the inelastic scattering
parameter is giverlV characteristics show an enhanced sub-
gap conductance for increased inelastic scattering rates.
The actual value for the inelastic scattering time in the
interlayer of experimentally realized devices was obtained by
fitting the microscopic model. The inelastic scattering values
explain, together with the opening of Andreev channels, the
nature of the intrinsic shunt in double-barrier junctions.
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APPENDIX A: DERIVATION OF THE BOUNDARY ~ .~ d . ~ .~ d
CONDITIONS V8¢ (1= GRGA) o L+ (73— GRmaGh - fr
From the definition of the Green’s functions in Keldysh CRAR ARAR AAAA L AAAA
Nambu spacgEqg. (1)], a boundary condition can be written +(GTG~ GG -G G+ GG,
for each of the matrix elements of E@4): +[(G RGR é?éR)}g_}S(éAéﬁ_é?éA)]fT_

~_d . A~ A
Y8£GRGR=GRGT-GEGR, (A5
X The right-hand side of the last boundary condition in Eg.
(A1) can be rewritten with the aid of E@18) into

~ d - - - o~
GA—GA=G G, -G{G", A aa A A A A A A
7eECT A 1 GRGRF, — GRF,GA— GRT, G4+ ,G4GA
_fCAGA_ARARE | ARFAA | ARFAA
yBg(éRiéuéKiéA) FGAGS - GRGRE + GRIGA+ GRIGA. (A6)
dx dx With Eq. (19) for f andf, this becomes
—GRGK+GKGA-GRGK-GXGA. (A1)

With definition (18), the left-hand side of the latter of these RARS A AA Re A AAAA
three boundary conditions becomes +[GR(GRr3— 75G) — (GRrs— 7561 Gl fry

X[(GR-GAGA—GR(GR-GA)]f,

[GR(GR-G}) — (GR-GHGAIf 4

e da o d s
RAR _ R A
T+GRGR L T-GR - (1GY)

d -
R R
G dXG

veé A A A Aaa AD. A Ana
+[GRT3GY — TG G + GG — GRGRT; ] f 1.
Aada~ A~ da
+ GRfd—GA+ fGAd—GA (A7)
X X Equating left- and right-hand sides of the last boundary con-
With the aid of the first two equations in EGA1) this can be  dition in Eqg. (Al), i.e., Egs.(A5) and (A7), respectively,

rewritten into finally gives the form of the boundary condition as presented
in Eq. (25).

(A2)

d- d d .
GRGR—f—GR A R} A
Gdde(fG)+GfdG

788 G APPENDIX B: TIME CONVOLUTIONS IN ENERGY

o mamaa s SPACE
+(GRGF~GIGR)f~ (GG~ GIG"). (A3)
By making use of the normalization conditi@®R*GR(*)

=1 and the definition foff and 1‘1 [Eq. (19)], this can be A ,
futher rewritten as a°b(tt’)= | dta(t,ty).b(ty,t"), (B1)

The expression for a convolution of two functions,

can be transformed by changing variables

¥8é| (fL+ T3ty —GR (fL+}3fT)GA}
! * — 1 ’ tl_t,
+(éRé§—é?éR)(fL+;’3fT) aob(t,t ):f_ dtla t_tl,T b tl_t o )
— (f+ 75 1) (GAGA— GAGA) (A4) .
LT 73lT ! ! ' Subsequently, a Fourier transform to energy-frequency space
which is equal to can be made:
aob(t,t,): jw dtlda)d Eda)ldEra(E’w)eiE(t—tl)/heiw(t+tl)/2hb(E/'wl)eiE'(tl—t/)/ﬁe[iw'(tl+t')]/2h
_2 dtldEdE’an(E)e'E(‘ 1)/ |nw0(t+t1)/2fib (E )e |E (tl—t’)/hein’wo(t1+t’)/2h
— 2 dEdEran(E)eiEt/ﬁeinwot/Zﬁbn,(E/)e—iE't’/hein'wot'/2ﬁ5(_ E+nwo/2+ E’+ n/wolz)
n'n" J—*
g ,, ntn’ 1\ a—IE' (t=t')Fi ol (N2) wo(t—t')H Si[(n +n)/2R] wo(t+t)
= 2 dE'a,| E'+ wo by (E)e e “0 e lwo . (B3)
n'n" J—*
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With an energy-shifE=E+ Nwe/2 this becomes

nw
2

0

acb(t,t’)= >, f dEaﬂ( E'+
n/n/ — 0

The triple products in boundary conditiof&34) and(3.35 can

-

PHYSICAL REVIEW B 68, 224513 (2003

1% x @ 1E—t")/A] gil(n' +n)/2h] wo(t+1")

(B4)

be worked out in the same manner. The sine and cosine terms

cause shifts in the arguments. An example of the result of a triple convolution is given (8Hqg.
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