78 research outputs found

    Digitizing tuberculosis treatment monitoring in Wuhan city, China, 2020–2021: Impact on medication adherence

    Get PDF
    IntroductionDigital technologies can improve adherence to tuberculosis (TB) treatment. We studied the impact of digitizing TB treatment monitoring on adherence among TB patients in Wuhan, China, during 2020-2021.MethodsWe compared an electronic system introduced to monitor TB medication adherence (e-Patient Service System; e-PSS) with the p paper-based standard of care (TB Control Information System; TCIS) in terms of prescribed TB treatment doses taken by patients and patient outcome after six months of follow up. We designed a cross sectional study using retrospective data for all drug susceptible pulmonary TB patients recorded on both systems. The main indicators were: compliant first follow up visit (within 3 days of start of treatment); medication adherence (80% or more of monthly doses taken); and end of treatment success ratio.ResultsA total of 1,576 TB patients were recorded in TCIS in July September, 2020 and 1,145 TB cases were included in e-PSS in January March, 2021. The distribution of patient demographic and clinical features was similar between the two groups. A larger proportion from the e-PSS group visited the community doctor in the first three days compared with the TCIS group (48.91 versus 29. 76 % respectively). Medication adherence was also higher in the e-PSS group during the 6 months of treatment than in the TCIS group (84. 28 versus 80.3 3 % respectively). Treatment success was 92.52% in the e-PSS group and 92.07% in the TCIS group. Multivariate logistic regress ion analysis demonstrated that adjusted odds ratios for compliant first follow up visit, medication adherence and favorable treatment outcome in the e-PSS versus TCIS groups were 2.94 (95% 2.47 3.50), 1.33 (95% 1.08 1.63), and 1. 12 (95% CL: 0.79 1.57) respectively.DiscussionThis study revealed improvements in TB care following an intervention to monitor treatment digitally in patients in Wuhan, China

    Proposed clinical phases for the improvement of personalized treatment of checkpoint inhibitor–related pneumonitis

    Get PDF
    BackgroundCheckpoint inhibitor–related pneumonitis (CIP) is a lethal immune-related adverse event. However, the development process of CIP, which may provide insight into more effective management, has not been extensively examined.MethodsWe conducted a multicenter retrospective analysis of 56 patients who developed CIP. Clinical characteristics, radiological features, histologic features, and laboratory tests were analyzed. After a comprehensive analysis, we proposed acute, subacute, and chronic phases of CIP and summarized each phase’s characteristics.ResultsThere were 51 patients in the acute phase, 22 in the subacute phase, and 11 in the chronic phase. The median interval time from the beginning of CIP to the different phases was calculated (acute phase: ≤4.9 weeks; subacute phase: 4.9~13.1 weeks; and chronic phase: ≥13.1 weeks). The symptoms relieved from the acute phase to the chronic phase, and the CIP grade and Performance Status score decreased (P<0.05). The main change in radiologic features was the absorption of the lesions, and 3 (3/11) patients in the chronic phase had persistent traction bronchiectasis. For histologic features, most patients had acute fibrinous pneumonitis in the acute phase (5/8), and most had organizing pneumonia in the subacute phase (5/6). Other histologic changes advanced over time, with the lesions entering a state of fibrosis. Moreover, the levels of interleukin-6, interleukin-10 and high-sensitivity C-reactive protein (hsCRP) increased in the acute phase and decreased as CIP progressed (IL-6: 17.9 vs. 9.8 vs. 5.7, P=0.018; IL-10: 4.6 vs 3.0 vs. 2.0, P=0.041; hsCRP: 88.2 vs. 19.4 vs. 14.4, P=0.005).ConclusionsThe general development process of CIP can be divided into acute, subacute, and chronic phases, upon which a better management strategy might be based devised

    Classifying the evolutionary and ecological features of neoplasms

    Get PDF
    The consensus conference was supported by Wellcome Genome Campus Advanced Courses and Scientific Conferences. C.C.M. is supported in part by US NIH grants P01 CA91955, R01 CA149566, R01 CA170595, R01 CA185138 and R01 CA140657 as well as CDMRP Breast Cancer Research Program Award BC132057. M.J. is supported by NIH grant K99CA201606. K.S.A. is supported by NCI 5R21 CA196460. K. Polyak is supported by R35 CA197623, U01 CA195469, U54 CA193461, and the Breast Cancer Research Foundation. K.J.P. is supported by NIH grants CA143803, CA163124, CA093900 and CA143055. D.P. is supported by the European Research Council (ERC-617457- PHYLOCANCER), the Spanish Ministry of Economy and Competitiveness (BFU2015-63774-P) and the Education, Culture and University Development Department of the Galician Government. K.S.A. is supported in part by the Breast Cancer Research Foundation and NCI R21CA196460. C.S. is supported by the Royal Society, Cancer Research UK (FC001169), the UK Medical Research Council (FC001169), and the Wellcome Trust (FC001169), NovoNordisk Foundation (ID 16584), the Breast Cancer Research Foundation (BCRF), the European Research Council (THESEUS) and Marie Curie Network PloidyNet. T.A.G. is a Cancer Research UK fellow and a Wellcome Trust funded Investigator. E.S.H. is supported by R01 CA185138-01 and W81XWH-14-1-0473. M.Gerlinger is supported by Cancer Research UK and The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. M.Ge., M.Gr., Y.Y., and A.So. were also supported in part by the Wellcome Trust [105104/Z/14/Z]. J.D.S. holds the Edward B. Clark, MD Chair in Pediatric Research, and is supported by the Primary Children's Hospital (PCH) Pediatric Cancer Research Program, funded by the Intermountain Healthcare Foundation and the PCH Foundation. A.S. is supported by the Chris Rokos Fellowship in Evolution and Cancer. Y.Y. is a Cancer Research UK fellow and supported by The Royal Marsden/ICR National Institute of Health Research Biomedical Research Centre. E.S.H. was supported in part by PCORI grants 1505–30497 and 1503–29572, NIH grants R01 CA185138, T32 CA093245, and U10 CA180857, CDMRP Breast Cancer Research Program Award BC132057, a CRUK Grand Challenge grant, and the Breast Cancer Research Foundation. A.R.A.A. was funded in part by NIH grant U01CA151924. A.R.A.A., R.G. and J.S.B. were funded in part by NIH grant U54CA193489

    Building on Old Wisdom:Strategies for Energy Efficient Improvements in Traditional Buildings on the Sichuan Ancient Salt Road

    No full text
    This thesis addresses issues surrounding the design and construction of buildings associated with the Sichuan Ancient Salt Road (SASR). Of particular interest are buildings from the 18th to 20th century when rich natural resources were greatly exploited along the road. Chongqing, located in the middle of this east-west old trade road (SASR) in southwest China, attracted a considerable number of tradesmen and labours with its abundant salt resources. Commercial activities that developed encouraged local industries and promoted the development of architecture in Chongqing and its surrounding area. New building techniques were introduced by the tradesmen and this brought new concepts from their hometowns. These migrant-inspired techniques had a significant effect on existing local styles and methods as the new ones showed the potential to tackle the issues associated with the local climate in building design. The potential benefits of these new techniques and how they impacted the techniques and local building skills have been studied. The conclusion provides insights into the refurbishment of historical buildings and also the construction of contemporary buildings which have adopted traditional styling in Chongqing. Previously, the buildings which were built by the migrants or designed with functions to meet migrant needs were studied. The research described here considered from the macro perspective of the impacts of the trade road or on a certain type of architecture and techniques in particular locations. However, the holistic analysis and evaluation of the migrant building techniques on the road in Chongqing can be developed further. This research adopts a mixed methods approach including a literature review and case studies of the qualitative research and data evaluation of the quantitative research. The literature review considers the styles and techniques of the traditional timber-framed buildings and the key components of such buildings that were affected by interregional commercial activities and migration on the SASR in Chongqing. The outcome of the quantitative data indicates the optimal options for a local bioclimatic building design for retrofitting or new construction and the potential development of the techniques introduced by the migrants. Case studies analysis demonstrates the positive and negative impacts of the migrant techniques which were conducted in previous design in Chongqing and the potential contribution of such techniques in future design for the refurbishment of historical buildings and contemporary buildings with traditional styling. The techniques arising from the migrants and the locals are compared with the guidelines developed in the quantitative analysis, which is an important contribution of this research to the field of knowledge. The integration of qualitative and quantitative methods provides a more comprehensive view of the research. The achievement and contribution of the analysis of migrant techniques provide an opportunity to harmonize economic development with the conservation of architectural heritage in the circumstances of developing urbanisation

    Exploring the value of qualitative and quantitative feedback in a mobile health edutainment system

    No full text
    In face of the threats from the Covid-19 pandemic, governments in many parts of the world are striving for cost-effective ways to carry out public health campaigns or educations related to the epidemic. In this research, we design an interesting mobile health edutainment system, which provide the public with access to health knowledge and enhance their health awareness through gamified interactions. Through the perspective of protection motivation theory, we examine the impact of qualitative and quantitative feedback traits on users\u27 threat assessment and coping appraisal, which in turn are expected to influence their learning outcomes and compliance intentions. The outcomes of this research are expected to provide important implications for designing more effective feedback mechanisms in health edutainment systems and to evoke better gamified strategies to promote the public’s responsible health behaviors

    Rational Design of Goethite-Sulfide Nanowire Heterojunctions for High Current Density Water Splitting

    No full text
    The preparation of efficient and stable bifunctional electrocatalysts for electrochemical overall water splitting (OWS) to scale up commercial hydrogen production remains a great challenge. Here, we synthesized heterojunction structures consisting of Co9S8/Ni3S2 nanowire arrays and amorphous goethite (FeOOH, α-phase) particles as efficient OWS catalysts using an interface engineering strategy. The interfacial charge inhomogeneity caused by the heterojunction contact leads to the generation of a built-in electric field, which makes the electron-deficient FeOOH and electron-rich Co9S8/Ni3S2 favorable for hydrogen/oxygen evolution reaction, respectively, thus ensuring the excellent activity of FeOOH/Co9S8/Ni3S2 as a bifunctional catalyst. FeOOH/Co9S8/Ni3S2 exhibits impressive catalytic activity for the oxygen evolution reaction, achieving an ultralarge current density of 1000 mA cm–2 needed as low as 265 mV overpotential, and its stability was tested up to 1440 h. Furthermore, an excellent OWS output (1.55 V to generate 10 mA cm–2) is achieved by the bifunctional FeOOH/Co9S8/Ni3S2 catalysts

    Rational Design of Goethite-Sulfide Nanowire Heterojunctions for High Current Density Water Splitting

    No full text
    The preparation of efficient and stable bifunctional electrocatalysts for electrochemical overall water splitting (OWS) to scale up commercial hydrogen production remains a great challenge. Here, we synthesized heterojunction structures consisting of Co9S8/Ni3S2 nanowire arrays and amorphous goethite (FeOOH, α-phase) particles as efficient OWS catalysts using an interface engineering strategy. The interfacial charge inhomogeneity caused by the heterojunction contact leads to the generation of a built-in electric field, which makes the electron-deficient FeOOH and electron-rich Co9S8/Ni3S2 favorable for hydrogen/oxygen evolution reaction, respectively, thus ensuring the excellent activity of FeOOH/Co9S8/Ni3S2 as a bifunctional catalyst. FeOOH/Co9S8/Ni3S2 exhibits impressive catalytic activity for the oxygen evolution reaction, achieving an ultralarge current density of 1000 mA cm–2 needed as low as 265 mV overpotential, and its stability was tested up to 1440 h. Furthermore, an excellent OWS output (1.55 V to generate 10 mA cm–2) is achieved by the bifunctional FeOOH/Co9S8/Ni3S2 catalysts

    Targeting Renal Proximal Tubule Cells in Obesity-Related Glomerulopathy

    No full text
    As a metabolic disorder, obesity can cause secondary kidney damage, which is called obesity-related glomerulopathy (ORG). As the incidence of obesity increases worldwide, so does the incidence of end-stage renal disease (ESRD) caused by ORGs. However, there is still a lack of effective strategies to prevent and delay the occurrence and development of ORG. Therefore, a deeper understanding and elaboration of the pathogenesis of ORG is conducive to the development of therapeutic drugs for ORG. Here, we review the characteristics of pathological lesions of ORG and describe the roles of lipid metabolism disorders and mitochondrial oxidative stress in the development of ORG. Finally, we summarize the current available drugs or compounds for the treatment of ORG and suggested that ameliorating renal lipid metabolism and mitochondrial function may be potential therapeutic targets for ORG

    Patterning of oncogenic Ras clustering in live cells using vertically aligned nanostructure arrays

    No full text
    As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluorescence lifetime imaging. To further promote fundamental investigations and the related drug development, we hereby introduce a nanobar-based platform which effectively guides Ras clusters into quantifiable patterns in live cells that is resolvable under conventional microscopy. Major Ras isoforms, K-Ras, H-Ras, and N-Ras were differentiated, as well as their highly prevalent oncogenic mutants G12V and G13D. Moreover, the isoform specificity and the sensitivity of a Ras inhibitor were successfully characterized on nanobars. We envision that this nanobar-based platform will serve as an effective tool to read Ras clustering on the plasma membrane, enabling a novel avenue both to decipher Ras regulations and to facilitate anti-Ras drug development.Ministry of Education (MOE)Nanyang Technological UniversityNational Research Foundation (NRF)Accepted versionThis work is funded by Singapore Ministry of Education (MOE) (W. Zhao, RG145/18 and RG112/20), the Singapore National Research Foundation (W. Zhao, NRF2019-NRF-ISF003-3292), the NTU Start-up Grant (W. Zhao), the NTU-NNI Neurotechnology Fellowship (W. Zhao), DFG (K. Rajalingam), and Ageing Research Institute for Society and Education (ARISE) NTU for the research scholarship (H. Mu)
    • …
    corecore