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Abstract

Neoplasms change over time through a process of cell-level evolution, driven by genetic and 

epigenetic alterations. However, the ecology of the microenvironment of a neoplastic cell 

determines which changes provide adaptive benefits. There is widespread recognition of the 

importance of these evolutionary and ecological processes in cancer, but to date, no system has 

been proposed for drawing clinically relevant distinctions between how different tumours are 

evolving. On the basis of a consensus conference of experts in the fields of cancer evolution and 

cancer ecology, we propose a framework for classifying tumours that is based on four relevant 

components. These are the diversity of neoplastic cells (intratumoural heterogeneity) and changes 

over time in that diversity, which make up an evolutionary index (Evo-index), as well as the 

hazards to neoplastic cell survival and the resources available to neoplastic cells, which make up 

an ecological index (Eco-index). We review evidence demonstrating the importance of each of 

these factors and describe multiple methods that can be used to measure them. Development of 

this classification system holds promise for enabling clinicians to personalize optimal 

interventions based on the evolvability of the patient’s tumour. The Evo- and Eco-indices provide 

a common lexicon for communicating about how neoplasms change in response to interventions, 

with potential implications for clinical trials, personalized medicine and basic cancer research.

Neoplasms evolve1–3. This evolution has been recognized since 1976 (REF. 4), and it 

explains the processes of both carcinogenesis and acquired therapeutic resistance1. The 

evolution of neoplasms is shaped by the selective pressures of their microenvironmental 

ecology. But between and within cancer types, tumours probably display differences in the 

dynamics of cancer evolution and ecology, including the rates at which new clones appear 

and go extinct, how different those clones are from one another and whether they appear in 

bursts or at a more regular pace. Many of the evolutionary and ecological properties of a 
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neoplasm are clinically relevant5–16, though this is not always true6,16,17, and in most cases 

their clinical relevance has not yet been tested. There is a need for a common language and 

conceptual categories for drawing clinical distinctions that capture the relevant genetic, 

environmental and kinetic parameters that impact tumour adaptation and progression, as 

well as response to therapy. A classification system for the evolution and ecology of 

neoplasms would provide clinicians and researchers with a foundation for developing better 

prognostic and predictive assessments of tumour behaviour, such as response to an 

intervention.

The ultimate purpose of a classification system for the evolution and ecology of neoplasms 

is to provide a descriptive tool by which to improve clinical management with respect to the 

overall survival and quality of life of the patient. It would also help to drive research and 

discovery in cancer biology and oncology.

Below, we discuss the methods by which we reached consensus as well as the goals and 

guiding principles we aspired to in the development of a framework for classifying 

neoplasms. We then discuss each of the components of the classification system as well as 

methods for measuring them and for dividing tumours into an initial set of 16 classes. We 

discuss how such a classification system could be developed, improved and used clinically 

in the future.

Methods

We convened a consensus conference of experts in the fields of cancer evolution and cancer 

ecology to lay the groundwork for the development of an evolutionary and ecological 

classification system. The initial participants (Maley, Aktipis, Graham, Sottoriva, Boddy, 

Janiszewska, Silva, Gerlinger, Anderson, Brown and Shibata) were among the faculty for the 

Evolution and Ecology of Cancer summer school funded by Wellcome and held at the 

Wellcome Genome Campus in Hinxton, UK, in July of 2016. Input from all participants was 

solicited, and after discussion, we identified areas of consensus. Afterwards, other leaders in 

the field were invited to join the effort by co-editing and discussing the developing 

statement. All authors reviewed and approved the final statement. Wellcome Genome 

Campus Advanced Courses and Scientific Conferences provided financial support for the 

consensus meeting. We have named the classification system, with their permission, in 

appreciation of Wellcome’s support. Please note that the statement reflects the opinions of 

the authors and not necessarily those of Wellcome.

Goals and guiding principles

Our development of this framework has been guided by several goals and principles. We 

agreed that an ideal classification system should have the following properties. First, it must 

be able to alter a clinical decision point. Second, it should be simple enough to be easily 

remembered and applied. Third, it should also align with our current understanding of the 

dynamics of neoplasms. Fourth, the classification system should be general enough to be 

applied across different types of neoplasm, recognizing that the types of measurement may 

need to be individualized to a given type of cancer.
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This framework is based on fundamental theoretical principles underlying evolutionary and 

ecological dynamics. It is not based on any particular assay or parameter but rather captures 

the fundamental drivers of tumour evolution. This is a necessary first step that we hope will 

lead to many methodological and measurement innovations to quantify the key components 

of tumour evolution and ecology that we identify here. Because the evolution of cancer is 

still a relatively new field, there is still uncertainty about the best ways to measure and 

describe the evolution and ecology of a tumour.

There are also practical considerations in the construction of a classification system. If a 

tumour could be classified based on a single biopsy from standard assays such as those that 

can be done on formalin-fixed paraffin-embedded (FFPE) tissue or standard radiological 

images, translation to the clinic would be relatively easy. However, studies have not yet been 

done to test whether measures of the evolvability of a tumour from a single biopsy sample 

are sufficient or whether multiple samples substantially improve predictions of clinical 

outcomes15. We hypothesize that we will need to extensively sample neoplasms over both 

space and time in order to accurately quantify their evolvability, but this remains an open 

question. It is clear, however, that evolutionary analyses are limited if the clonal structure of 

the primary tumour is unknown18. The use of cell-free DNA (cfDNA) from liquid biopsy 

samples should facilitate longitudinal studies19, although deconvoluting the clones within 

such a mixed sample remains a challenge20.

Framework for classifying tumour evolution

There are many well-established ways to classify tumours, largely based on extent of spread 

and morphological appearances (for example, stage and grade). An evolutionary 

classification system would augment current schemes by further capturing the evolvability of 

a tumour. How much intrinsic genetic instability does it have? How likely is it to respond 

quickly to a new selective pressure such as a therapeutic intervention? For example, rapid 

progression after chemotherapy is probably driven by pre-existing resistant variants, and 

therefore, failure is more likely in tumours with more subclonal diversity (intratumoural 

heterogeneity)6. Moreover, it would be useful to classify evolution through time. For 

example, a second biopsy from the same patient after therapy may reveal minimal diversity, 

indicating a recurrent tumour derived from a single clone, or substantial diversity, suggesting 

intrinsic resistance by the majority of tumour cells. There was widespread agreement at the 

consensus conference that both the evolutionary dynamics of the neoplastic cells themselves 

(cancer cell intrinsic factors) and the microenvironment that defines the ecology of those 

cells (cancer cell extrinsic factors) are important in predicting the future behaviour and 

response of a tumour. To capture this, we have developed a framework for both an 

evolutionary index (Evo-index) that describes the intrinsic evolvability of the neoplastic cell 

population and an ecological index (Eco-index) that describes potential selective pressures 

imposed by the surrounding microenvironment.

The Evo-index

The Evo-index (D#Δ#) is a combination of two fundamental components: the diversity (D) 

or intratumoural heterogeneity of the neoplasm and how it changes over time (Δ). In other 
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words, the Evo-index quantifies heterogeneity in both space and time (FIG. 1a). Both 

diversity and changes in the clonal structure of a tumour over time are objective measures 

and may be assessed as part of preclinical studies or clinical trials.

Diversity

The heterogeneity that is currently present in a population defines its capacity to respond, at 

a population level, to selective pressures. This diversity is the fuel for the engine of natural 

selection. There are different forms of diversity, including genetic diversity, epigenetic 

diversity, phenotypic diversity and functional diversity. Genetic diversity can predict 

progression to invasive cancers12,13 as well as recurrence and survival5–9,16. The relationship 

between diversity and clinical outcomes is not universally consistent across different cancer 

types6,16 and can be complicated (BOX 1).

Box 1

Important issues in the measurement of diversity in neoplasms

There are a number of important issues and open questions in the measurement of 

diversity in neoplasms: How are clones defined? What is the best measure of diversity? 

How do the measures scale up to genomic assays? Are there nonlinear associations 

between diversity and clinical outcomes? Is genetic or functional diversity more 

predictive? Is it sufficient to measure diversity in the primary tumour, or do we need to 

measure diversity in the metastases? Is it adequate to estimate diversity from bulk biopsy 

assays, or do we need to measure diversity at the single-cell level?

In order to measure diversity, one must first define the unit that is being measured. We 

typically cluster cells into clones, but there is currently no general definition of a clone. 

Typically, for expediency, clones are defined as the set of cells that share an alteration of 

interest, due to descent from a common ancestor cell. A more stringent definition of a 

clone is a set of cells that have the same genotype based on some assay12,13. However, 

that definition does not scale well to whole-genome assays because every neoplastic cell 

probably displays a unique genome. By contrast, measures of divergence between 

samples only become more accurate as assays scale up to the genomic level12–14,46. 

Another alternative would be to reconstruct the cell lineage (phylogeny) of a neoplasm 

and then define clones based on the topology of the cell lineage, although this is not 

straightforward. A similar problem has been addressed by viral and bacterial 

phylogenetics, and methods may be borrowed from these fields167,168.

It is not clear which alterations should be used to measure diversity. Some forms of 

diversity, such as mutations in exons and copy number changes, may be more clinically 

relevant than other forms of diversity. However, Merlo and colleagues found that defining 

a clone based on selectively advantageous mutations and defining a clone based on 

evolutionarily neutral mutations both predicted progression to cancer13.

Instead of genetics, one could measure diversity based on RNA expression or other 

phenotypic characteristics169,170. Because selection acts on phenotypes, this may be a 

better predictor of a the evolvability of a tumour than genetic measures of diversity. 

Gatenby and colleagues have argued that because of this and the fact that there are many 
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different genotypes that can produce the same phenotype, analysis at the phenotype level 

may be easier and provide a better measure of evolvability than analysis at the genotype 

level171,172. However, this hypothesis is controversial, and only a few studies have tested 

it173,174. Unfortunately, the literature on how to measure functional diversity remains 

poorly developed30.

The diversity of the primary tumour may differ from that of any metastases. Because the 

primary tumour is often removed and it is the metastases that kill patients, we may have 

to measure diversity within and between any metastases that can be sampled in order to 

best predict clinical outcomes2.

It is currently difficult to measure many loci or phenotypes at the single-cell level. Bulk 

sequencing or other assays at the biopsy level introduce significant biases. For example, 

recent mutations that are present in only a single cell or a small minority of cells are 

missed in bulk assays, biasing results to the early mutations and those mutations driving 

clonal expansion175. Preliminary analyses show that a mixture of clones within a biopsy 

sample can also mislead any analyses based on estimates of shared ancestry, such as 

phylogenetic reconstruction176. However, it is currently difficult to assay enough loci in 

enough single cells to reconstruct reliable cell lineages and identify rare clones177.

Diversity can be a proxy for the likelihood that a resistant clone is present in a neoplasm. We 

currently do not know all the mutations and epigenetic alterations that make a neoplastic cell 

resistant to a particular therapy, and even those we do know are difficult to detect if they are 

present in only a small region of the tumour. Compared with homogeneous neoplasms, 

diverse neoplasms are more likely to harbour resistant clones and are also probably more 

likely to evolve resistance in the future.

Multiple forms of diversity within a neoplasm may be clinically important, not only as fuel 

for natural selection but also as biomarkers of clinically targetable dynamics. For example, if 

high levels of genetic diversity are indicative of high levels of moderately deleterious 

passenger mutations21,22, then suppressing mechanisms in the cell that buffer against those 

deleterious effects, such as chaperone proteins, should preferentially harm neoplastic cells21. 

Alternatively, diversity may be indicative of cooperation between clones, through 

mechanisms such as cross feeding23–27. These mechanisms of cooperation are themselves 

potential therapeutic targets. Theory suggests that targeting cancer cell cooperation should 

provide weaker selection for resistance than cytotoxic therapies28.

It is likely that not all forms of diversity are equal, and future work must test which are 

clinically relevant. It may be the case that measures of functional diversity or even 

phenotypic diversity are better predictors of clinical outcomes than measures of genetic 

diversity (as many genetic mutations will have no phenotypic consequence), and the ideal 

measures may vary between tumour types.

Measuring diversity

Of the four components of the classification framework, the largest number of methods has 

been developed for measuring diversity (intratumoural heterogeneity)13,25,29 (TABLE 1). 
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There is a large literature in ecology on the quantification of diversity30. The overall 

diversity of a large area, or landscape (gamma diversity), can be broken down into the 

diversity within local regions (alpha diversity) and the differences between regions (beta 

diversity)31. Inherent in this definition is the concept that measuring diversity requires 

defining the spatial scale that one is examining. One might define within-region diversity as 

the diversity measured within a biopsy sample, while between-region diversity would 

account for differences between biopsy samples in multi- region sampling studies. 

Alternatively, one could take a sample across an entire tumour, perhaps using cfDNA, and 

estimate the diversity of the entire population. Most of the studies to date have focused on 

within-region diversity5,6,32,33 or the diversity of the entire tumour12–14,25. The use of 

ecological statistics for measuring between-region diversity in tumours remains relatively 

unexplored. Established measures of differences between microbial communities34 could 

possibly be applied to measuring differences between biopsy samples.

There are many ways to measure diversity30 and a number of challenges to measuring 

diversity in neoplasms, as discussed in BOX 1. In Barrett oesophagus, Merlo and colleagues 

tested many of those measures of diversity and found that high levels of diversity were 

predictive of progression to cancer, regardless of the measure13,14. Because evolution is 

driven by the fitness outliers35, and it may take only one resistant cell at diagnosis to 

eventually cause drug resistance or relapse after therapy, much of the predictive value of 

measuring diversity may lie in the long tail of rare clones. Because of this, we recommend 

using either a count of the number of clones (‘species richness’) or Shannon index, which 

equally weights number and relative abundance of clones, to quantify diversity30.

The feasibility of obtaining a complete picture of the diversity of a neoplasm, through multi-

region sampling or cfDNA, varies across tumour types. In Barrett oesophagus, bladder 

cancer and prostate cancer, multi-region sampling is part of the current standard of care36–38. 

In a well-mixed neoplasm, such as a blood cancer, a single sample may be sufficient, but it 

requires single-cell assays, which have their own challenges (BOX 1). In other tumours that 

are difficult to sample, such as pancreatic cancers, we are lucky to get more than one biopsy 

sample. The main challenge in using cfDNA is detecting it in serum for cancers that have 

not yet metastasized, although the level of tumour cfDNA in serum varies across cancer 

types. A recent study was able to detect tumour cfDNA in 97% of early-stage lung 

squamous cell carcinomas but only 19% of early-stage lung adenocarcinomas39.

The interpretation of the diversity of a neoplasm depends on the context of its history. A 

neoplasm that has just been homogenized by a therapy that killed most of the clones in that 

neoplasm is different from a neoplasm that is homogeneous because it has a very low 

mutation rate and has not had enough time to accumulate many clones. By contrast, a high 

level of diversity in a neoplasm that has just passed through a therapeutic bottleneck may be 

a sign that therapy selected for a mutator phenotype40. Because of this complication, we 

agreed that we must measure how neoplasms are changing over time as well as diversity.

Change over time

There are a variety of ways that a neoplastic cell population changes over time. These 

include mutations, natural selection and genetic drift. One important parameter of change 
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over time is the mutation rate, which describes how fast a lineage accumulates new 

mutations. Of course, there are different mutation rates induced by each mechanism for 

genetic and epigenetic alteration, including mutation signatures induced by specific agents41 

as well as telomere erosion, non-homologous recombination, other forms of chromosomal 

instability, CpG methylation and his-tone modifications. Which mechanisms are relevant 

will depend on individual tumours and may vary across the different clones within the same 

tumour.

When we talk about and measure mutation rates, we are implicitly assuming that mutations 

happen at a regular rate. Evolutionary biologists call these ‘molecular clocks’ (REF. 42). 

However, a catastrophic mitosis can generate chromosomal alterations across the genome in 

a single event43,44. There is a continuum from regular, gradual, clock-like small alterations 

to sporadic, punctuated, large alterations. For example, a lineage may evolve different 

mutation rates across its history, as happens with the evolution of a mutator phenotype45,46. 

If a cell lineage can change suddenly, in what used to be called a ‘macromutation’ 

generating a ‘hopeful monster’ (REF. 47), then that tumour may have a different capacity for 

evolution compared with a tumour that is constrained to evolve through the slow 

accumulation of mutations with small phenotypic effects. There is a large cancer literature 

on genetic instability that is relevant here48,49, and evidence has shown that tumours with 

extremely high mutation rates may have a better prognosis than tumours with moderate 

rates6,11,21,22,50. High levels of genomic instability may make it difficult for cell lineages to 

maintain the adaptive information encoded in their genomes, generating non-viable daughter 

cells, and may also produce an abundance of neo-antigens that stimulate an antitumour 

immune response6. Furthermore, high mutation rates of single nucleotide variants can 

generate deleterious mutations, leading to the fitness decline of neoplastic cell lineages in a 

form of Muller’s ratchet21,51. This may even cause tumour regression in some cases21,22.

The genetic composition of a population changes over time not only through the rate at 

which mutations arise and the genetic drift of those alleles but also through the action of 

natural selection. Natural selection leads to adaptations, such as drug resistance52, that are 

clinically relevant. Detecting and measuring natural selection is likely to be an important 

component of our future clinical management of cancers.

The classification of a neoplasm’s change over time (Δ) will probably need to take into 

account both the speed at which a tumour acquires genetic or epigenetic alterations, or 

changes phenotypically, including how fast clones spread by natural selection, as well as the 

tempo of that change (from gradual to punctuated). The appropriate intervals for 

longitudinal sampling will depend on the rate of change over time53. Note that neutral, or 

‘passenger’, mutations should not be ignored in these calculations because selective 

pressures change over time, particularly with the onset of therapy. Thus, resistance 

mutations, which may be deleterious or neutral in the absence of therapy, can become 

selectively advantageous for neoplastic cells exposed to therapy54.

Measuring change over time

Measuring change over time is complicated, whether it is genetic or phenotypic change 

(TABLE 1). FIGURE 1b illustrates a simple version of how the Evo-index can describe 
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evolutionary changes in tumour cell populations. It is possible for there to be change over 

time but for diversity to remain stable, with a dynamic equilibrium of clones appearing and 

going extinct14. For single samples, past genetic changes over time can be indirectly inferred 

based on mutation frequencies17,55. Sottoriva and Graham have pioneered methods to infer 

the mutation rate and to distinguish between tumours that are dominated by genetic drift 

versus those with evidence of natural selection after transformation. In the absence of 

selection, mutations that occur in the first cell division after transformation should appear in 

approximately one-half of all cancer cells, mutations that occur in the second round of cell 

division should appear in one-quarter of all cancer cells, and so on17,56.

There are a number of measures of genetic change over time from population genetics that 

might be used on neoplasms, including Nei’s standard genetic distance57,58 and the Jaccard 

similarity coefficient59, as well as measures of beta diversity that can also quantify changes 

in a community over time, such as UniFrac34 or the fixation index60. The degree of genetic 

divergence between samples (called ‘nucleotide diversity’ in molecular population genetics) 

provides indirect information on the degree of change over time. Genetic divergence is often 

defined as the percentage of the genome that is different between pairs of samples12–14. This 

statistic provides predictive power independent of the number of clones for predicting 

progression12,13, supporting the framework of including both diversity and change over time 

in the Evo-index. Note that the same clonal structure can have radically different degrees of 

genetic divergence (FIG. 2). Maley and colleagues have calculated a mean pairwise 

divergence score between all pairs of samples from a neoplasm12–14. As the chance that two 

samples come from the same clone (and so have minimal divergence) depends on the size of 

the clone, the mean pairwise divergence blends the degree of divergence with clone size 

measures (and so blends D with Δ).

One of the primary tools for measuring change over time in evolutionary biology is 

phylogenetic inference, which reconstructs the history of a neoplasm61,62. Phylogenetic 

methods can be used to describe and quantify diversity patterns as well as rates of evolution 

across both space and time. Multiple phylogenetic approaches have been developed in recent 

years to study tumour evolution within a patient, both for bulk and single-cell data and from 

a variety of data types20,63. These methods depend on evolutionary models for the likelihood 

of molecular alterations occurring in neoplastic cell lineages, although the development of 

these models is still in its infancy.

All of the measures discussed so far can be calculated from a single timepoint. Of course, 

the degree and nature of change over time can be better measured directly with longitudinal 

samples. Minimally invasive assays, such as sequencing cfDNA from longitudinal blood 

samples, could reveal the action of natural or artificial selection in patients.

Incorporation of the Evo-index into clinical trials can better describe, in evolutionary terms, 

why interventions fail. Most human tumours at the time of clinical presentation contain 

multiple large clones6,16 and probably many more small clones64,65, and relapse without a 

reduction in diversity would probably imply intrinsic resistance or perhaps that an 

intervention resulted in increased mutagenesis. By contrast, relapse with less diversity (D1) 
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implies a bottleneck effect where only a minority of tumour cells survived the intervention, 

probably indicating selection for one or a few resistant clones.

The Eco-index

From the perspective of an organism or a neoplastic cell, its ecology can be broadly 

described by two characteristics: hazards (H) and resources (R)66–69 (FIG. 3). Hazards, here, 

are the things that can kill a cell. The relevant resources required for cell maintenance and 

growth are many and varied; whatever may potentially limit the growth of the neoplastic cell 

population66. Note that hazards and resources here are understood from the perspective of 

the neoplastic cell, not the patient. This is an important point from ecology —we can 

understand the evolution and responses of a population best when we take the perspective of 

an organism in that population70.

From an ecological perspective, the hazard and resource profiles for a species select for the 

particular life history strategies of that species. Aktipis and colleagues argued that the same 

principles are true for neoplastic cells71. Species that are exposed to high levels of hazard 

tend to evolve fast life history strategies, reproducing quickly and investing little in 

maintenance and survival. Organisms subjected to hazards generally leave behind higher 

levels of unexploited resources. Ecosystems with high or fluctuating resource supplies 

favour organisms that can rapidly reproduce to exploit those opportunities. This selects for 

speed over efficiency and can result in very high population densities but also fluctuating 

levels of unexploited resources. By contrast, populations that have few hazards and a steady 

supply of resources will tend to expand to the carrying capacity of the habitat, at which point 

natural selection favours organisms that can best compete for and efficiently utilize the 

limiting resources72. The heterogeneity of resources and hazards across space also has 

important impacts on the future evolution of cancer cell populations and prognosis for 

patients73,74.

Hazards

There are multiple sources of hazards for neoplastic cells, including immune cells, toxins, 

waste products, microorganisms and anticancer therapies. There is good evidence that 

immune predation is associated with improved cancer prognosis73,75–83. Furthermore, there 

is emerging evidence linking high mutation loads that result in the formation of neo-antigens 

with immune predation and better survival in patients treated with immune checkpoint 

blockade therapies84–86. In addition, a high subclonal neo-antigenic burden is associated 

with worse outcomes in lung cancer when patients are treated with checkpoint inhibitors87. 

These data suggest that subclonal neo-antigens might impede cytotoxic immune responses 

against neo-antigens that are present in every tumour cell.

Other hazards faced by neoplastic cells include the accumulation of waste products in their 

micro-environments67,69,88,89. This may include lactic acid and lactate build-up from 

glycolysis88,90 as well as reactive oxygen species from excessive cellular proliferation91. 

Methylglyoxal92,93, nitric oxide94,95 and advanced glycation end products96,97 have also 

been implicated as toxic waste products in cancer microenvironments.
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The role of the microbiome in cancer is complicated and largely unknown. While some 

microorganisms may promote tumours98,99, others have antitumour effects98, enhancing the 

efficacy of chemotherapy100. Thus, micro-organisms may act as both resources and hazards 

for neoplastic cells.

Measuring hazards

The current best measures of hazards for a neoplastic cell depend on measures of immune 

predation (TABLE 1). There is a large literature on the association between infiltrating 

lymphocytes and favourable prognosis in cancer73,75–83. In addition, a pan-cancer analysis 

revealed T cell signatures to be broadly favourable prognostic markers across 25 cancer 

types101. Galon and colleagues have found that a signature of activated T cells from bulk 

tumour samples is also strongly predictive of favourable survival76–78,83. Yuan and 

colleagues have shown that haematoxylin and eosin images can be computationally analysed 

to identify neoplastic cells, fibroblasts and lymphocytes and, furthermore, that patients with 

breast cancer who show colocalization of neoplastic cells with lymphocytes in the tumour 

have a better prognosis than patients with tumours in which the lymphocytes are separated 

from the neoplastic cells75. This is based on a standard ecological statistic, the Morisita–

Horn index102, for quantifying statistically significant colocalization in order to detect 

ecological interactions (in this case, predation). These results suggest that immune predation 

is a major form of hazard for a neoplastic cell, and measures of that predation should be a 

central component of the ecological index.

While much research has investigated the potentially toxic effects of low pH (REFS 

103,104), fewer studies have examined the fitness consequences to cancer cells from various 

metabolites. Future research should determine the effects of different concentrations of 

putative toxic metabolites on cancer cell survival and proliferation in both cell culture 

experiments and mouse models. Measurements of anticancer drug concentrations in the 

tumour are also likely to quantify important hazards for the neoplastic cells. In addition, the 

microbiome (including the virome) of tumours can be surveyed to reveal microbial hazards 

for the neoplastic cells105.

Resources

Resources, including oxygen, glucose, micronutrients, survival signals, growth signals and 

space, are also critical to the future behaviour of a tumour. Surprisingly little is known about 

the interactions between cell metabolism and the availability of key resources, which 

ecologists term the organism’s ‘foraging ecology’. Almost all cancers rely on glycolytic as 

opposed to aerobic metabolism, suggesting that resources can select for tumour 

phenotypes106,107. From nature, we know that selection favours feeding behaviours that 

balance speed, efficiency and safety108. There must be strong selection for cancer cells to do 

the same (for example, through upregulation of transporters such as glucose transporter type 

1, erythrocyte/brain (GLUT1, also known as SLC2A1)109). Measuring which resources limit 

the population size and proliferation of neoplastic cells would allow researchers to identify 

some of the strongest selective pressures on the tumour and to predict how it will change in 

the future. This approach would also provide targets for further reducing the evolvability of 

the neoplasm by lowering the carrying capacity of its microenvironment.
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In the broader ecological literature, consumer–resource theory110 shows that resource 

supply, depletion and availability affect population growth rates, population sizes and 

competition between different species (that is, distinct clonal lineages). Resource supply 

represents the rate at which new resources enter the system (in this case, the tumour) and the 

rate at which resources become available through nutrient cycling within the system. The 

aggregate consumption of all cells depletes the resources, typically to levels much lower 

than experienced by normal tissues111. In fact, glucose becomes depleted below levels 

detectable by most analyses112. However, in some cases, immune predation and fluctuations 

in resource supply can prevent the complete exploitation of resources113,114, leaving patches 

of residual resources available for future exploitation115.

The potential resources for a tumour include the contents of plasma and the metabolites 

synthesized and secreted by the normal cells of the tumour and its microenvironment. 

Hence, the list includes proteins (albumins, globulins and fibrinogens), glucose, amino acids, 

fatty acids, hormones, electrolytes, oxygen and trace elements. The functional response and 

the value of the resources to the consumer are dictated by nutritional relationships116. In 

some cases, lack of a resource may trigger stasis, but in others, it may lead to cell death or 

dispersal117. At the moment, there are many open questions about the intratumoural cycle of 

critical nutrients other than carbon and nitrogen (that is, phosphate, iron, copper, etc.)118. 

These nutrient cycles may contain valuable therapeutic targets.

Some resources, particularly growth and survival signals, may be provided by the 

neighbouring stromal cells119,120. Nutrients may also be provided by the stroma. Pyruvate 

and lactate can be supplied to cancer cells by activated fibroblasts121,122, and fatty acids may 

be supplied by activated adipocytes123,124. Tumour and stroma only come into physical 

contact when the basement membrane is breached by malignant neoplastic cells. At this 

stage, cancer cells can directly interact with cancer-associated fibroblasts, which are known 

to play a key role in the regulation and development of tumours, especially solid 

tumours120,125. In this secretory reactive state, fibroblasts facilitate not only cancer growth 

and progression126,127 but also treatment resistance128. In addition, their presence in a 

tumour has been correlated with poor outcomes129.

Other resources must be delivered through the vasculature. Folkman made the crucial link 

between angiogenesis and tumour invasion and metastasis, realizing that preventing new 

vessels from forming could be a simple way to inhibit further tumour growth130,131. The 

presence in many tumours of necrosis and hypoxia, which are major drivers of angiogenesis, 

attests to the importance of resource limitation in tumours. Furthermore, there is evidence 

that necrosis is a prognostic factor in many cancers132.

The effects of resources on the evolution of a tumour are not defined simply by their supply, 

depletion and availability. Resource diversity may also be important. Whether resources are 

uniform across space or heterogeneous (‘patchy’ or exhibiting gradients) makes a 

difference67,133. Patchy resources (and hazards) create multiple habitats (for example, rich 

and sparse regions) that may select for different clones that can survive in those regions and 

may be differentially responsive to (and differentially exposed to) therapies. Furthermore, 

we and others have shown that if those patchy resources change over time, then there is 
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selective pressure on cells to move to escape regions of scarce resources and exploit 

transient regions of more plentiful resources67,113,114,134–136. Thus, ecological theory 

predicts that heterogeneous resources should select for invasion and metastasis134,135, and 

there is evidence to support that prediction in cancer137–143. Verduzco and colleagues found 

that intermittent exposure of some cell lines to hypoxia selected for increased resistance to a 

variety of chemotherapies, including etoposide, docetaxel and methotrexate, compared with 

unselected controls144. In addition, resource gradients often lead to rapid evolution, as 

organisms that are able to invade more stressful environments can escape competition and 

flourish145. Much needs to be learned about resource heterogeneity, consumer–resource 

dynamics and the foraging ecology of neoplastic cells.

Measuring resources

Measuring resources (and hazards) requires the consideration of relevant spatial and 

temporal scales. It is not yet clear how to combine measures of the level of resources, their 

spatial variance and their stability over time into a single statistic.

There are various resources and methods to measure them that may be prognostically 

relevant (TABLE 1). The proportion of a tumour that is necrotic or poorly perfused may be 

read from standard positron emission tomography and computed tomography (PET–CT) 

images146 and through other measures of blood vessel density147,148. The degree and 

patchiness of hypoxia can also be assayed in FFPE samples with antibodies against carbonic 

anhydrase 9 (CA9) or hypoxia-inducible factor 1α (HIF1α)115 or via intravenous 

introduction of 2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide 

(EF5) and the subsequent measurement of its binding in the tumour tissue149. EF5 binding 

and related techniques have proved useful in the clinic for detecting regions of hypoxia, 

determining prognosis and measuring response to therapy150. While it is difficult to measure 

glucose concentration directly, an indirect measure may be made via immunohistochemistry 

staining for expression of GLUT1115. Measures of ATP may also be a good indirect measure 

of the amount of resources available to neoplastic cells151. Glutamine, pyruvate, lactate, 

fatty acids, calcium, potassium, phosphorus and various trace metals may also be limiting 

and important to measure, but this appears to be unexplored. Most of these measures will be 

limited to biopsy samples analysed ex vivo and thus will suffer the problems of spatial 

heterogeneity and sampling error.

In some cases, the problem of spatial heterogeneity and sampling error can be avoided 

through gross measures of resources from radiological images152–154 Radiographic images 

such as those obtained using PET–CT and magnetic resonance imaging (MRI) can provide 

valuable habitat data. In natural systems, there is usually a tight correlation between habitat 

and the types and characteristics of species inhabiting the habitat. Similarly, simply knowing 

the different habitat types within a tumour may be prognostic of the community of cancer 

cells and therapeutic outcomes. For instance, in glioblastoma, measures of fluid-attenuated 

inversion recovery (FLAIR), T1 and T2 from MRI examinations after gadolinium 

administration identified distinct habitats that correlated with therapeutic outcome, 

independent of tumour size153. Texture analysis of MRI scans has been used to identify 

spatial heterogeneity and regional variations that are associated with microenvironmental 
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conditions, including cell density, tissue stiffness, blood flow and nutrient dispersion152,154. 

These may also be used to measure functional diversity (D) in tumours. Geographic 

information systems (GIS)155–157 and ecology158 provide a rich literature and a source of 

tools for analysing spatial resource information, but these are rarely utilized in cancer 

research73,74.

Standard histopathology can provide measures of T cell infiltration and vascular and 

lymphatic density77. Using digital pathology, Lloyd et al. investigated the spatial 

distributions of oestrogen receptor (ER) expression in relation to vascular density and tissue 

necrosis in breast cancer histology specimens, revealing considerable regional variations in 

cancer proliferation phenotypes accompanied by vascularity and immune response115,159. 

Yuan and colleagues also used digital pathology to analyse the spatial relationships between 

fibroblasts and neoplastic cells160. We have summarized the statistics and assays for 

measuring diversity, change over time, hazards and resources in TABLE 1.

Categories of tumours

The future behaviour of a tumour depends on both its evolutionary potential (the Evo-index) 

and the selective pressures on the tumour (the Eco-index). A highly evolvable tumour may 

or may not evolve immune evasion depending on whether the immune system is imposing a 

strong selective pressure on the tumour. By contrast, an immune response may or may not 

lead to immune evasion depending on the evolvability of the tumour. Thus, both the 

evolution and ecology of a tumour must be considered in predicting cancer outcomes. We 

therefore propose to combine the Evo- and Eco-indices to classify tumours. Dichotomizing 

each evolutionary and ecological factor of the Evo- and Eco-indices into high and low values 

would produce 16 possible types of tumour (TABLE 2).

In order to classify a tumour, investigators will first need to define and validate clinically 

relevant thresholds for dichotomizing diversity, change over time, hazards and resources 

(TABLE 1). For example, in Barrett oesophagus, Maley and colleagues found that the upper 

quartile of diversity statistics distinguished patients who are likely to progress to 

oesophageal adenocarcinoma12–14. Once those thresholds are validated, a tumour would be 

measured for each of the four evolutionary and ecological factors to determine which of the 

16 types it falls into. For example, if a tumour was below the thresholds for all four factors 

(that is, a D1Δ1H1R1 tumour), it would be a type 1 tumour.

A roadmap for improvements

We are not yet in a position to specify which measures and thresholds should be used to 

determine the D#Δ# or H#R# type of a tumour. Initial studies should test if these 

classifications significantly predict clinical outcomes and which evolutionary and ecological 

measures provide independent predictive value. They should also test if there are measures 

that can apply across cancer types or if they have to be uniquely defined for specific organs 

or tumour subtypes. Future studies should test alternative measures of diversity, change over 

time (BOX 2), hazards and resources to help standardize useful metrics for the 

classifications. They should also quantify the improvements to prognosis gained by 

sampling multiple regions at multiple timepoints.
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Box 2

The future of the Evo-index

Our framework for quantifying the evolvability of a neoplasm is based on the diversity 

within the tumour and how that diversity changes over time. Diversity and genetic change 

over time are the easily observable results of the underlying evolutionary dynamics. A 

future evolutionary index (Evo-index) may be based on the parameters that determine the 

rates of evolution15:

• Mutation rate17,178

• Population size of the self-renewing neoplastic cells (also known as ‘cancer 

stem cells’), which are the units of evolutionary selection in cancer3

• Generation time of the self-renewing neoplastic cells

• Selective coefficients17,179 or clonal expansion rates14

• Heritability of selectively advantageous phenotypes

Most of these parameters are currently difficult to measure. However, there is already 

good evidence that the number of self-renewing cells in a tumour is associated with 

adverse outcomes180,181, that self-renewing cell frequency increases with 

progression182,183 and that self-renewal signalling pathways are actionable and effective 

targets for therapy184,185. This is probably true for all types of tumour. Assaying self-

renewing cells functionally (by xenotransplantation) is difficult, but quantifying stem cell 

signatures is possible. However, stem cell phenotypes are not stable and can be 

modulated both by genetic changes and (epigenetically) by ecological conditions (for 

example, hypoxia)3, suggesting that the importance of any one parameter is also a 

function of its heritability.

The ecology of a tumour affects its evolution, and the evolution of the cells in a tumour 

change their ecology. Neoplastic cells evolve genomic instability161, generating neo-

antigens as well as adaptations, such as recruitment of resources, through activating 

fibroblasts162 and neo-angiogenesis161. Evolution of neo-antigens triggers immune 

predation, which may reduce diversity and select for immune evasion163. High levels of 

extrinsic mortality and resources select for rapid proliferation with little investment in 

somatic maintenance71. These interactions imply that not all possible combinations of 

ecological and evolutionary measurements are equally likely. We will probably be able to 

drop some of the 16 possible tumour types in TABLE 2 and focus on the subset of classes 

that present in the clinic.

The framework for a classification system that we have proposed could be incorporated into 

clinical trials, which could allow us to gather data on how the different types of evolving 

tumour respond to different types of intervention (FIG. 4). Clinical trials could then be 

developed to stratify treatment of patients based on the Evo- and Eco-indices of their 

tumours. We could use the results to develop guidelines for best practice in managing 

cancers.
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Vision of the future

In the future, the pathology report for a neoplasm could include its Evo-index and Eco-index 

classifications. Ideally, these classifications would provide ‘chessboard’-like scenarios 

where, based on the current evolutionary class of a tumour, one could anticipate how the 

tumour type will change with different possible therapeutic moves (FIG. 4). Clinicians 

would then be able to choose appropriate interventions for the evolvability of those 

neoplasms and would also be able to track whether the neoplasms change substantially in 

response to interventions. A D1Δ1 tumour or even a D1Δ2 tumour would be a prime 

candidate for aggressive therapy with curative intent. In fact, a D1Δ1 tumour may be so 

evolutionarily indolent as to not require any form of intervention. On the other hand, a D2Δ2 

tumour is likely to have multiple resistant sub-clones present at diagnosis, and future clinical 

trials should test if such a tumour can be managed through strategies that minimize the 

expansion of resistant sub-clones by exploiting their disadvantage in competition with 

sensitive subclones164. A legitimate clinical strategy might be to down-stage a tumour from 

a highly evolvable one to a much more clinically manageable class that could be contained 

in a non-lethal state indefinitely (FIG. 4b). If validated, the Evo- and Eco-indices could be 

used as surrogate measures for overall survival or disease-free survival.

Conclusions

The evolutionary biology of cancer is, clinically, in a similar state to psychiatry in the 

nineteenth century. At that time, there was no standard classification system for mental 

illness used by practitioners. Without such a classification system, it was difficult to even 

talk about the illness, let alone make progress, as a common language was lacking. With the 

American Medical Association’s Standard Classified Nomenclature of Disease published in 

1933 (REF. 165) and the first Diagnostic and Statistical Manual of Mental Disorders 

published in 1952 (REF. 166), no matter how flawed they were, diagnoses of mental 

disorders became standardized, which facilitated studies to refine both the classifications as 

well as the treatment of those disorders. Studies based on the same classification system 

were then comparable, which further facilitated meta-analyses and overall progress in the 

field.

We have diagnostic categories for types of tumour based on their tissue of origin and 

staging, as well as some molecular markers, but we have lacked a system for classifying the 

evolvability and ecology of a tumour, which help determine how it will respond to 

interventions and how it might best be managed. Evolutionary oncology requires a shared 

lexicon upon which to base discovery. We reached consensus on the proposed framework for 

a classification system to characterize evolutionary differences between tumours that is 

applicable across all cancer types. Importantly, an evolutionary classification system will 

facilitate future efforts to study this fundamental property of tumours to reveal implications 

for treatment.
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Glossary

Clones
Sets of cells that share an alteration of interest due to descent from a common ancestor cell.

Selective sweep
The spread of a mutation through a population due to natural selection.

Phenotypic diversity
The variety of different cellular states present in a population of cells.

Functional diversity
The variety of life history strategies present in a population of cells.

Genetic drift
Change in allele frequencies due to sampling error of gene copies from one generation to the 

next. Genetic drift is stronger in smaller populations.

Muller’s ratchet
Accumulation of deleterious mutations in asexual populations. This accumulation is 

irreversible because in asexual populations, deleterious mutations cannot be purged through 

recombination.

Nei’s standard genetic distance (DS).
A measure of the genetic divergence between species or populations given their respective 

allele frequencies. When the mutation rate is constant, DS increases linearly with time, from 

zero to infinity. In a multiregional or longitudinal sequencing study, it would quantify the 

amount of genetic divergence between two regional or temporal biopsy samples.

Jaccard similarity coefficient

Maley et al. Page 17

Nat Rev Cancer. Author manuscript; available in PMC 2018 February 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The proportion of species or clones that are present in both regions compared with the 

number of species or clones observed in the union of both regions.

UniFrac
A measure of the difference between biological communities that takes into account the 

phylogenetic distances (relatedness) between community members as well as their relative 

abundances.

Fixation index (FST).
A population genetic measure that estimates the proportion of global genetic variability that 

can be explained by population structure. In a multiregional sequencing study, it would 

quantify how much of the intratumoural heterogeneity is due to differences between regional 

biopsy samples.

Life history strategies
Relative investments in and mechanisms of growth, reproduction and survival of specific 

organisms or cells.

Morisita–Horn index
A statistic for measuring the extent to which two species tend to co-occur in the same 

locales.

Selective coefficients
The relative differences in fitness between genotypes.
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Figure 1. The Evo-index and how it changes
a | The evolutionary index (Evo-index) is composed of two factors corresponding to 

heterogeneity over space (diversity, D) and heterogeneity over time (change over time, Δ). 

By ‘change’, we mean both change in the genetic, epigenetic and phenotypic alterations 

present in the population and change in the frequencies of those alterations in the neoplastic 

cell population. What measures of D and Δ are best is an open question. In addition, how 

these factors should be stratified into two, three or more classes is also an open question. 

Here, for simplicity, we provide examples of the kinds of dynamics that could be categorized 

into a simple 2 × 2 classification. b | The genetic composition of a tumour may change either 

slowly (Δ1) or rapidly (Δ2) in a variety of ways. On the left, a tumour may have low 

diversity (D1) at time 0 because it is a new tumour or there has been a recent homogenizing 

clonal expansion. That tumour may be quiescent and so appear substantially the same at 

time 1 (D1Δ1), or it may accumulate clones, some of which expand, to generate a diverse 

tumour by time 1 (D2Δ2). Alternatively, a tumour may be diverse (D2) at time 0 because it 

is old or has a high mutation rate and is evolving neutrally. At time 1, that tumour may have 

been homogenized by a selective sweep (D1Δ2) or may continue on its current trajectory 

with gradual turnover of its clones (D2Δ1).
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Figure 2. Clonal divergence is independent of clonal structure
The cell lineages from two tumours may have the exact same clonal structure when they are 

sampled at the far right but have radically different degrees of genetic divergence. If one 

tumour (part a) has a higher mutation rate or has been accumulating genetic alterations for a 

longer period of time because those cells had a common ancestor, it will have a higher level 

of genetic divergence than another tumour (part b).
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Figure 3. The Eco-index
sThe ecological index (Eco-index) is composed of two factors corresponding to the hazards 

(H) and resources (R) available to the neoplastic cells. These capture the broad categories of 

selective pressures on a population. We have included example phenomena in this figure that 

might be observed in the different combinations of the degrees of hazards and resources. For 

example, a tumour with low hazards (H1) and low resources (R1) might be relatively barren, 

with few infiltrating lymphocytes but also poor perfusion and few supporting cells. Such an 

environment would select for cells that can either survive on few resources or move to locate 

more resources. High levels of hazards (H2) should, according to life history theory71, select 

for rapid proliferation, evasion of predation, migration away from the hazards67 and little 

investment in cell (and DNA) maintenance. High levels of resources allow neoplastic cells to 

rapidly proliferate. Thus, an H2R2 tumour would probably undergo massive cell turnover as 

cells are killed by the hazards and replaced by their rapidly proliferating sisters.
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Figure 4. Changing the evolutionary class of a tumour through interventions
With the classification system outlined in TABLE 2, we could examine how different 

interventions move tumours between categories. a | In this example, chemotherapy can be 

mutagenic and can select for hypermutator clones, generating new clones and more 

diversity40,186,187. It can also kill endothelial cells and thus have an anti-angiogenic 

effect188, resulting in a tumour (type 13) with one of the worst predicted prognoses. This 

may partly explain why tumours that recur after chemotherapy are so difficult to control. b | 

Immunotherapy, if successful, may increase the predation hazards to the tumour and perhaps 

select for a subclone, reducing diversity. Targeted therapy, unlike chemotherapy, probably 

does not cause significant DNA damage and may further genetically homogenize the 

tumour. Anti-angiogenic therapy is designed to restrict the resources of the tumour. At the 

end of this example sequence, the tumour is in the most manageable, least evolvable 

category (type 3 in TABLE 2). Of course, chemotherapy, immunotherapy and targeted 

therapy may have different effects depending on the details of those therapies and their 

interaction with the clones in the tumour and their ecosystem.
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Table 1

Measures and assays for the factors that go into the Evo- and Eco-indices

Icon Factor Statistics Assays

High

Low

Diversity (D) • Divergence12–14,46

• Number of clones (richness)6,12–14

• Shannon index12–14

• Simpson’s index12,13

• Functional diversity115,169,170,61–63

• Phylogenetic trees20

• Whole-exome and whole-genome 
sequencing

• Multi-region sequencing

• SNP arrays

• Methylation arrays

• FISH

• Single-cell DNA and RNA 
sequencing

• Cell-free DNA sequencing19

• RNA-Seq

• Proteomics

• Radiology

High

Low

Change over 
time (Δ)

• Mutation rates17,178

• Estimates of selection17,179

• Clonal expansion rates14

• FST (REF. 60)

• Nei’s standard genetic distance57,58

• Change in above diversity statistics

• Longitudinal sampling

• Whole-exome and whole-genome 
sequencing

• Cell-free DNA analysis19

High

Low

Hazards (H) • Abundance of infiltrating 
lymphocytes82,83

• Morisita–Horn index of 
colocalization of cancer cells and 
lymphocytes75

• Signatures of immune 
activation82,83,101

• Density of pathogenic 
microorganisms99

• Prevalence of microbial virulence 
genes105

• Automated image analysis

• Immunohistochemistry

• RNA-Seq

• 16S rRNA sequencing

High

Low

Resources (R) • Degree of hypoxia146,149

• Density of blood vessels147,148

• Colocalization of cancer cells with 
fibroblasts160

• Concentration of ATP151, glucose 
and other nutrients

• Blood flow152,154

• Automated image analysis

• Immunohistochemistry

• MRI or PET–CT scans

• Intravenous induction of EF5

• Luciferase luminescence

• Mass spectrometry

Eco-index, ecological index; EF5, 2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide; Evo-index, evolutionary index; FISH, 
fluorescence in situ hybridization; FST, fixation index; MRI, magnetic resonance imaging; RNA-Seq, RNA sequencing; rRNA, ribosomal RNA; 

PET CT, positron emission tomography and computed tomography; SNP, singe nucleotide polymorphism.
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Table 2

An initial classification scheme

Type Icon Evo-index Eco-index Description

1 D1Δ1 H1R1 Like a desert, these tumours have few resources and little diversity. With low 
turnover, they are evolutionarily inert.

2 D1Δ1 H1R2 Much like normal tissue, these tumours have sufficient resources but evolve very 
slowly.

3 D1Δ1 H2R1 These tumours may have the best prognosis, with an immune response that 
probably helps to control the tumour, restricted resources and little capacity to 
evolve.

4 D1Δ1 H2R2 These tumours have ample resources but have also stimulated an antitumour 
immune response. However, they are otherwise evolutionarily inert.

5 D1Δ2 H1R1 These tumours are genetically homogeneous but are changing over time, perhaps 
through population bottlenecks or selective sweeps that re-homogenize the tumour.

6 D1Δ2 H1R2 These tumours are changing over time, potentially through homogenizing selective 
sweeps of new clones. While they may grow rapidly, with ample resources, their 
genetic homogeneity may make them vulnerable to therapy.

7 D1Δ2 H2R1 Predation by the immune system in these tumours may reduce genetic 
heterogeneity through selection against neo-antigens.

8 D1Δ2 H2R2 Natural selection may be driving the changes in these tumours and homogenizing 
them.

9 D2Δ1 H1R1 These tumours may be the result of the slow accumulation of clones over a long 
period of time or from exposure to mutagens.
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Type Icon Evo-index Eco-index Description

10 D2Δ1 H1R2 Like a garden, these tumours support a variety of clones, are well fed and are 
protected from hazards such as predation, but they change little over time.

11 D2Δ1 H2R1 Accumulation of many mutations may have led to an immune response in these 
tumours, but they appear to be otherwise restricted in their growth and evolution.

12 D2Δ1 H2R2 These genetically diverse tumours are changing only slowly, perhaps due to a low 
mutation rate or relatively weak selective pressures.

13 D2Δ2 H1R1 These tumours are evolving rapidly, generating and maintaining new clones at a 
high rate. They are probably under selective pressure for the ability to survive and 
proliferate with scarce resources or otherwise escape these resource constraints.

14 D2Δ2 H1R2 With potentially the worst prognosis, these genetically diverse tumours are 
evolving rapidly and have plenty of resources. They should have the highest 
capacity to evolve in response to interventions or other changes in their 
environment.

15 D2Δ2 H2R1 These rapidly evolving and diverse tumours are under the dual selective pressures 
of resource limitations and immune predation.

16 D2Δ2 H2R2 Like a rainforest, these genetically diverse tumours are changing rapidly, with a 
constant churn of new clones evolving and others going extinct. Resources are 
abundant, although they are probably being consumed rapidly, and predation from 
the immune system is extensive.

D, diversity; Δ, genetic, epigenetic or phenotypic change over time; Eco-index, ecological index; Evo-index, evolutionary index; H, hazards; R, 
resources.
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