11 research outputs found

    Towards graphane field emitters

    Get PDF
    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V ÎŒm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.</p

    Towards graphane field emitters.

    Get PDF
    We report on the improved field emission performance of graphene foam (GF) following transient exposure to hydrogen plasma. The enhanced field emission mechanism associated with hydrogenation has been investigated using Fourier transform infrared spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron microscopy. The observed enhanced electron emissionhas been attributed to an increase in the areal density of lattice defects and the formation of a partially hydrogenated, graphane-like material. The treated GF emitter demonstrated a much reduced macroscopic turn-on field (2.5 V ÎŒm-1), with an increased maximum current density from 0.21 mA cm-2 (pristine) to 8.27 mA cm-2 (treated). The treated GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is further attributed to hydrogenation and the subsequent formation of a partially hydrogenated structured 2D material, which advantageously shifts the emitter work function. Alongside augmentation of the nominal crystallite size of the graphitic superstructure, surface bound species are believed to play a key role in the enhanced emission. The hydrogen plasma treatment was also noted to increase the emission spatial uniformity, with an approximate four times reduction in the per unit area variation in emission current density. Our findings suggest that plasma treatments, and particularly hydrogen and hydrogen-containing precursors, may provide an efficient, simple, and low cost means of realizing enhanced nanocarbon-based field emission devices via the engineered degradation of the nascent lattice, and adjustment of the surface work function.For assistance in ATR FTIR and EDXRF measurements we thank Dr Bob Keighley and Dr Ralph Vokes of Shimadzu Corp; and for plasma optical spectrophotometry analysis, Dr Thomas SchƱtte of PLASUS GmbH. This work is supported by National Key Basic Research Program 973(2010CB327705), National Natural Science Foundation Project (51120125001, 51002031, 61101023, 51202028), Foundation of Doctoral Program of Ministry of Education (20100092110015), an EPSRC Impact Acceleration grant, and the Research Fund for International Young Scientists from NSFC (510501101 42, 51350110232). MT Cole thanks the Oppenheimer Trust for their generous financial support.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5RA20771

    Studies on the Photoinduced Interaction between Zn(II) Porphyrin and Colloidal TiO2

    Get PDF
    The interaction of Zn(II) porphyrin (ZnPP) with colloidal TiO2 was studied by absorption and fluorescence spectroscopy. The fluorescence emission of ZnPP was quenched by colloidal TiO2 upon excitation of its absorption band. The quenching rate constant (kq) is 1.24×1011 M−1 s−1. These data indicate that there is an interaction between ZnPP and colloidal TiO2 nanoparticle surface. The quenching mechanism is discussed on the basis of the quenching rate constant as well as the reduction potential of the colloidal TiO2. And the mechanism of electron transfer has been confirmed by the calculation of free energy change (ΔGet) by applying Rehm-Weller equation as well as energy level diagram

    Temperature Effect on the Mechanical Properties of Electrospun PU Nanofibers

    No full text
    Abstract Polyurethane (PU) nanofibers were prepared from electrospun method. Atomic force microscopy (AFM) was employed to characterize the mechanical properties of electrospun PU nanofibers. The impact of temperature on the mechanical behavior of PU nanofibers was studied using three-point bending test based on AFM. A Young’s modulus of ~ 25 GPa was obtained for PU nanofibers with diameter at ~ 150 nm at room temperature. With decrease in nanofiber’s diameter, the increasing Young’s modulus can be due to the surface tension effect. The Young’s modulus of the PU nanofiber decreased linearly while the fibrous morphology was maintained with the increase of temperature

    Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation

    No full text
    The compatibility between asphalt and nanosilica (nano-SiO2) is critical to determine the performance of nano-SiO2–modified asphalt. However, a comprehensive understanding of the compatibility behavior and mechanism of asphalt components and nano-SiO2 in the modified asphalt is still limited. In this study, the compatibility was revealed through molecular dynamics (MD) simulation. Virgin asphalt, nano-SiO2–modified asphalt, and oxidation aged asphalt models produced with the COMPASS force field; meanwhile, the proposed models were validated by comparisons with reference data. The compatibility of asphalt and nano-SiO2 was analyzed by solubility and the Flory–Huggins parameters and interaction energy. Results show that the solubility parameters decreased with the increase of system temperature while increased with the asphalt’s oxidation level increase. Meanwhile, the compatibility of the asphaltene, resin, and aromatic components in asphalt is better than the compatibility with saturates, which may be due to saturates being volatile; however, the compatibility of the nano-SiO2 and saturates is much better than those with asphaltene, resin, and aromatic components. The incorporation of nano-SiO2 alleviates the volatilization of saturates. The present results provide insights into the understanding of the compatibility behavior and mechanism of nano-SiO2 and asphalt components

    Anti-influenza agents from Traditional Chinese Medicine

    No full text
    After new human transmissible H1N1 (swine flu) viruses were reported in Mexico and the United States in April 2009, the World Health Organization (WHO) announced the emergence of a novel influenza A virus. Most governments in the world have been alerted and are monitoring the situation closely. As one of the official responses to the H1N1 pandemic, the Chinese government has released three editions of a document entitled "Recommended Schemes for Pandemic Influenza A Diagnoses and Treatments". The third edition recommended the use of not only two targeted anti-flu drugs, oseltamivir and zanamivir, but also four anti-flu TCM (Traditional Chinese Medicine) prescriptions. Since then, TCM has played a significant role in fighting the pandemic. TCM drugs comprise multiple compounds regulating multiple targets for a given class of medical indications, and are tunable to the symptoms of the individual. This review summarizes anti-influenza agents from TCM, including compounds, herbs, and TCM prescriptions, and suggests that, by further investigating TCM theory and mining TCM databases, a better drug discovery paradigm may arise - one that can be beneficial to both TCM and modern medicine
    corecore