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Abstract 

Here we report on the improved the field emission performance of graphene foam (GF) 

following transient exposure to hydrogen plasma. The enhanced field emission mechanism 

associated with these treated has been investigated using Fourier Transform Infrared 

spectroscopy, plasma spectrophotometry, Raman spectroscopy, and scanning electron 

microscopy and has been attributed to an increase in the areal density of lattice defects and the 

formation of a partially hydrogenated, graphane-like material. The treated GF emitter 

demonstrated a much reduced macroscopic turn-on field (2.5 V/µm), with an increased 

maximum current density from 0.21 mA/cm2 (pristine) to 8.27 mA/cm2 (treated). The treated 

GFs vertically orientated protrusions, after plasma etching, effectively increased the local electric 

field resulting in a 2.2-fold reduction in the turn-on electric field. The observed enhancement is 

further attributed to hydrogenation and the subsequent formation of a partially hydrogenated 

structured 2D material, which advantageously shifts the emitter work function, alongside 

augmentation of the nominal crystallite size of the graphitic superstructure and the constitute 

macro molecules, are believed to play a key role in the enhanced emission. The hydrogen plasma 

treatment was also noted to increase the emission spatial uniformity, with an approximately four 

times reduction in the per unit area variation in emission current density. Our findings suggest 

that plasma treatments, and particularly those employing hydrogen and hydrogen-containing 

precursors, may provide an efficient, simple, and low costs means of realizing enhanced 

nanocarbon-based field emission devices via the engineered degradation of the nascent lattice 

and adjustment of the surface work function. 
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1.0 Introduction 

Graphene has attracted great attention in recent years because of its outstanding opto-electronic 

characteristics1-3 and its ever increasingly wide range of potential applications.4-8 Previous 

studies have extensively investigated the electron emission properties of graphene sheets lying 

flat on substrates.9, 10 However, little has been reported on the fabrication and performance of 

vertically aligned graphene on conventional substrates11. Such nanoengineered structures possess 

a unique potential in the field of vacuum nanoelectronics and, in particular, electron emission 

devices12, 13, in part, due to the ready availability of a significant number of exposed edge planes 

which provide a high density of efficient field emission sites.14 However, significant work is 

required to achieve practical graphene-based field emitters with low turn-on fields, high current 

densities, high temporal stabilities and uniform areal emission, all of which must be coupled with 

reliable function and inexpensive fabrication over large-areas. Three-dimensional graphene foam 

(GF); structured graphitic meta-structures grown on nickel or copper foam templates, have 

recently been considered as one viable means of synthesizing such inexpensive graphene-based 

devices, such as super capacitors.15-17  

 

The graphene sheets within GFs are seamlessly interconnected into a mechanically flexible 

network, endowing the material with excellent electrical and thermal conductivity, far superior to 

that of macroscopic, planar graphene structures derived from chemical exfoliation processes. The 

unique networked structure, coupled with the high specific surface area of the GF, provides 

outstanding electrical and morphological properties that may enable the realization of many 

hitherto unmanufacturable devices, such as novel field electron emission devices. However, such 

pristine GF is, in its as-grown pristine state, an enclosed hollow structure with few sharp edges. 

As such, these pristine GFs lack many suitable field emission sites and various methodologies 

have been investigated to improve their native emission18. It has been widely reported that 

exposure to plasma enhances native field electron emission form graphitic allotropes 19-23. The 

varied rationale for the observed improvements have included; increasing the tunneling 

coefficient by nanoscale tip sharpening 19, 24, adjustment of the emitting surfaces aspect ratio and 

micro morphology 25, increasing the lattice defect density 26, as well as the potential removal of 

deleterious catalyst material in a cleaning-like process 27 with an associated increase in the 

relative sp3 content 28. Amorphous, sp2 and sp3 carbon phases, along with mixtures thereof, have 

varied electronic characters; including their work function and electron affinity. The potential 

addition of dipole layers on the materials surface will also adjust the interfacial tunnel barrier.  
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Here, we reported a widely applicable, generalized post-treatment method to improve the field 

emission performance of GF-based electron emitters, where the as-grown graphene samples are 

treated with hydrogen plasma to enhance their electron emission performance via the derivation 

of a partially hydrogenated structured graphene foam. Our field emission experiments indicate 

that the emission efficiency can be noticeably improved following the rapid and facile plasma 

treatment. The possible underlying mechanism of the enhanced emission current is attributed to 

lattice degradation and the formation of a partially hydrogenated graphane derivative. 
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Fig. 1 Variation in ε (= , ,/treated pristine

on thr on thrE E ) and η (= max max/treated pristineJ J ) as a function of; (a) graphitic 

substrate, (b) plasma precursor, (c) plasma power, and (d) exposure time.  

 

1.1 Meta-Analysis 

A detailed meta-analysis of the literature is illustrated in Figure 1, shows the typical variation in 

amplification in emission current (density), η =  max max/treated pristineJ J , and reduction in turn-on and 

threshold fields, ε =  , ,/treated pristine

on thr on thrE E , for the various low dimensional graphitic allotropes 

(Figure 1(a)), including graphene,29, 30 carbon nanotubes (CNT),19, 21, 22, 24, 27, 28, 31-35 and carbon 

nanofibres (CNF)36, 37 as a function of plasma precursor type, plasma power, and exposure time. 

Here, the subscript ‘max’ denotes the maximum measured current density, with the threshold 

electric field (Ethr) and the turn-on electric field (Eon) defined as 10% and 30%, respectively, of 

the normalised current density. Normalization is necessitated by the intrinsic variation between 

studies.  η describes the amount by which the current density improves following plasma 

treatment. ε relates to the change in shape of the diode-like current-voltage curves following 

plasma treatment. The emission characteristics are enhanced for ε < 1 and are degraded for ε > 1. 

The most beneficial plasma exposure conditions are those for which η → ∞ and ε → 0. When εon 

> εthr; there is an increase in dJ/dE at low electric fields following plasma treatment, whereas, in 

the case where εon < εthr, there is a reduction in dJ/dE associated with the plasma treatment, 

which manifests as a flattening of the J-E plot. In the case where εon = εthr, the emission 

characteristics retain the same shape as the pristine samples. The mechanism which mediates 

such shifts is not yet entirely understood, and the underlying electron transport is currently under 

further investigation, to be reported elsewhere.  

As evidenced in Figure 1(a), of all the carbon allotropes reported, graphene shows the most 

promising enhancement following plasma treatment.  For all the graphitic nanocarbons studied, 

plasma treatment resulted in a mean reduction of 20% in the turn-on and threshold field; though 

in the case for graphene we noted a mean reduction in turn-on electric field of 27% and an η of 

29.3. The most common plasma precursor (Figure 1(b)), Ar, showed impressive enhancement, 

with N showing significant promise with one of the lowest ε (0.78) and a simultaneously high η 

(17.0). Nevertheless, to date few studies have considered the electron emission implications of 

H2 plasma treatment, with previous data for CNTs and CNFs suggesting ε = 0.86. It is worth 

noting that H2 plasma perform only slightly worse than NH3, with the latter having a known 

greater propensity for the formation of atomic hydrogen required for complete hydrogenation, 
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due to its lower thermal dissociation potential (N-H = 339 kJ/mol, H-H = 436 kJ/mol 38, 39). No 

studies to date have considered the use of hydrogen plasma on super-structured graphene-based 

electron emitters. There is an evident stronger dependency of η, than ε, on the gas type. It is 

unclear as to what the underlying enhancement mechanisms are at this stage. Nevertheless, it is 

certainly likely that the plasma precursor will affect the resultant degree of lattice degradation 

and band structure of the resulting emitter. The extent to which the emitter is etched is 

principally dictated by the plasma power. As shown in Figure 1(c), there is a clear trend in η 

which decreases with increasing plasma power. ε tends to increase with plasma power, with the 

exception for P > 100 W which we attribute to total removal of the emitter. Indeed, increasing 

plasma power may have a negative effect on the performance of the field emission, with < 200 

W performing dramatically better than for powers > 200 W. However, for very low plasma 

powers, little to no effect was noted, with the optimal plasma conditions likely dictated by the 

graphitic mass of the emitter. As highlighted in Figure 1(d), with those emitters exposed for 

long periods of time are often totally etched, particularly for those samples consisting of a very 

low graphitic mass, such as monolayer graphene. These fully-etched emitters subsequently 

performing worse than those that had no treatment.  
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Fig. 2 Synthesis procedure for partially hydrogenated structured graphene foam.  

 

2.0 Graphene Foam Preparation 

The detailed experimental procedure for the preparation of the GF used herein has been 

described in further detail elsewhere.17 Figure 2 outlines the procedure. In brief, a gaseous 

pyrolysed carbon feedstock was introduced into Ni foam (Figure 2(a)) by decomposing C2H2 at 

900oC at 5 mbar resulting in the conformal growth of multi-layer (nominally trilayer) graphene 

around the structured metallic catalyst (Figure 2(b)). To prevent collapse of these pristine GFs, 

before etching the Ni template using aqueous FeCl3 (Figure 2(c)), a 100 nm support layer of 

poly(methyl methacrylate) (PMMA) was deposited on the GFs surface. After the PMMA support 

layer was carefully removed, in an 80oC acetone bath, a contiguous three-dimensional 

interconnected graphene monolith was obtained. Energy Dispersive X-ray Fluorescence 
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(Shimadzu, EDX-8000) evidence residual Ni at at% comparable trace levels to that of Fe from 

the etchant. No Cl peaks were noted. The GF was finally attached to a Mo substrate using carbon 

paste to form the field emission cathode and partially hydrogenated using a H2 plasma treatment 

(Figure 2(d)). H2 plasma exposure is a common means of hydrogenation; other common 

approaches include liquid based classical Birch reduction40, though the use of conventional PE-

CVD has clear financial advantages, principle amongst which is that the same chamber can be 

used for the growth and hydrogenation. The pristine GF cathode structures were finally treated 

for 5 min in hydrogen (H2) plasma, at 800 W and 4 mbar, using a commercially available plasma 

enhanced chemical vapor deposition system (Aixtron Black Magic Pro). Plasma heating 

increased the sample temperature to around 300oC. We stress here that the lengthened time and 

power, relative to those suggested by our earlier meta-analysis, are a direct consequence of the 

increased graphitic mass of the GF cathode relative to the earlier CNT, CNF and graphene 

materials. Moreover, the degree of plasma dissociation of the H2 feedstock has a known sub-

linear correlation with plasma power, necessitating a higher plasma power. 

Field emission properties were measured in diode configuration in a custom-built vacuum 

chamber with a base pressure of 5×10−6 mbar. The GF cathode was placed adjacent to an indium 

tin oxide coated glass anode covered with a phosphor layer, separated from the cathode assembly 

with two 250 μm thick alumina spacers, with a measured emission area of 1 cm2.  

 

3.0 Results and discussion 
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Fig. 3 (a) An example optical emission spectrum from the H2 plasma during GF hydrogenation. 

(b) Fourier transformation infrared spectra of pristine and treated GF. (c) Raman spectra of the 

pristine and plasma treated GFs. 

 

 

Figure 3(a) shows the optical emission spectrum from the H2 plasma during hydrogenation. We 

note a rich spectrum containing various lines characteristic of a low carbon content hydrogen 

plasma. These include a CH lines at 387.1 nm,  390.0 nm, 431.4 nm, and 494.1 nm, in addition to 
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various sub-bands associated with CH(B2Σ−→ X2Π) emission (380-415 nm)41; cumulatively 

suggesting partial etching of the GF and liberation of atomic C into the ambient42, 43. Residuals 

ion species, such as O+ (411.2 nm) and N+ (408.1 nm), are also noted. The primary Hα line 

(652.2 nm) dominates the spectrum along with several other Balmer atomic hydrogen lines. As 

shown in Figure 3(b), the Fourier Transform Infra-Red Transform spectrum (Attenuated Total 

Reflectance FTIR; Shimadzu, IRTracer-100) of the treated samples shows clear absorption peaks 

at 2918.2 cm−1 and 2851.2 cm−1, corresponding to the olefinic C-H stretching mode and the 

aromatic C-H bending mode, respectively44, 45. No such peaks appear in the spectrum of the 

pristine graphene suggesting that plasma treatment does indeed, at least in part, result in the 

formation of a partially hydrogenated graphene backbone.  

 

To better understand the underlying mechanisms for the enhanced emission, pristine and treated 

GFs samples were inspected using a FEI Qunata 200 scanning electron microscope (SEM) and a 

Horiba JobinYvon HR800 Raman spectrometer operated with a laser excitation of 532 nm and 

an impinging power of < 5 mW. Figure 3(c) shows typical Raman spectra for the treated and 

pristine GF. After the plasma processing the intensity ratio of the defect indicative D-band (1585 

cm-1) to the G-band (2695 cm-1), ID/IG, was greatly increased from 0.16 (pristine) to 0.46 

(treated). Previous studies have shown that the Raman D-band primarily originates from lattice 

defects. Certainly in the present case the amount of defects within the GF have been greatly 

increased and may hint at one possible enhancement mechanism of the observed electron 

emission.  The increase in graphene crystal size, La, has been shown to be accessible through 

Raman Spectroscopy46. In the present study the pristine GF had an <La> of 119 nm, decreasing 

to 41 nm following plasma treatment. This reduction by a factor of 2.8 shows an excellent 

correlation with the observed beneficial 2.2 factor decrease in Eon, suggesting that an increase in 

defect areal density enhances the measured macro-scale turn-on electric field, likely due to the 

presence of an increased number of geometrically enhanced emission sites. Atomic hydrogen, 

stimulated during the hydrogen plasma treatment, is known to readily chemisorbed onto 

graphitic surfaces. It has been implicated as a key mediator in lattice unzipping in graphitic 

carbons47. Electron emission preferentially from graphene edges and small crystallites suggest 

that the more defective the graphene the higher the emission performance. However, for 

crystallites some 1.5 nm in diameter the work function in the pristine GF can be as high as 5.8 

eV48, whilst for La > 3 nm this value reduces to the bulk value (4.0 eV) and plateaus. In our case, 

our comparatively large crystallites remain unaffected by the deleterious increase in Φ; the GF 
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here is not over etched. Nonetheless, the presence of a high areal density of defect sites is, 

broadly speaking, advantageous for enhanced field emission, in so far as the crystallites remain 

larger than this critical feature size. As illustrated in Figure 4(a-d), which shows some example 

SEM images of the pristine and plasma treated surface morphology of the GFs, it is evident that 

a number of vertically aligned sharp edges were formed on the surface of GF after the plasma 

treatment and it is likely that the measured enhanced field emission is in part attributed to such 

structural augmentation, effectively providing an increased number of viable emission active 

sites on the GF’s surface. It is also worth noting that geometrical enhancement of the GF is 

implicitly associated with shifts in the bulk work function of the emitter.  

 

 

 

Fig. 4 Scanning electron micrographs of pristine GF before treatment in (a) low (Scale bar: 100 

μm) and (b) high (Scale bar: 10 μm) magnification, respectively, and the plasma treated GF in 

(c) low and (d) high magnification, respectively. (e) Typical variation in FE current density as a 

function of the applied electric field (J–E). The insert depicts the corresponding Fowler-

Nordheim plot highlighting the classically quasi-metallic linear transport properties of the GF.   

 

Optical transmission measurements, on the broadly flat-band spectra, suggest an increase of 

1.9% in the mean pore size following hydrogenation. Indeed, SEM inspection confirmed an 

increase in pore size, with mean pore diameter of 63.4 (±24.8) μm and 92.6 (±25.6) μm for the 

pristine and hydrogenated samples, respectively. Note that the suggested increase in pore size 

estimated from indirect optical transmission measurements are necessarily less than direct 

measurements by SEM given the structured network nature of the samples. Regardless of the 

exact magnitude of pore size increase, it is likely that such increases in pore size likely manifest 



Letter, Ding et al.  Submitted to RSC Advances 

 14 

as an improvement in the field emission performance through reduction of nearest neighbor 

electrostatic shielding.  

The dependence of the FE current density, J, on the applied electric field, E, of the pristine and 

treated chemical vapour deposited GF is shown in Figure 4(e). The corresponding Fowler-

Nordheim plots are shown in the insert of Figure 4(e). Exposure to a cold atomic hydrogen 

population during H2 plasma treatment dramatically reduced the turn-on electric field (Eon, 

defined as the macroscopic electric field to produce a current density of 10 μA/cm2); the nominal 

Eon reduced from 5.6 V/μm to 2.5 V/μm. A lowering of the threshold field (Eth, defined as the 

field required to produce a current density of 1 mA/cm2) was also noted, reduced from 8.1 V/μm 

to 5.0 V/μm, values consistent with those reported elsewhere for other graphitic nanocarbon 

allotropes49. Both the pristine and treated FE spectra exhibit near-linear behavior in the 

measurement range considered, attributing to the quasi-metallic transport character of the 

emitter. The emission current-voltage characteristics have been analyzed by Fowler-Nordheim 

theory, of the form; 

2 2 3/2

2
exp

V B d
J A

V

 

 

   
    

   
 

where J denotes the current density, A=1.56×10−6 (A V−2eV), B=6.83×109 (V eV−3/2Vm−1), Φ is 

the emitter work function, E is the macroscopic applied electric field, d is the distance between 

the anode and the cathode, and V is the applied voltage. Here, the β represents a matrix 

dependent field enhancement rather than a conventional single emitter based aspect-ratio-

dependent metric.  

 

Assuming Φ is 5.0 eV for graphitic materials,50 the mean field enhancement factors of treated GF 

and pristine GF were calculated as 3400 and 1100, respectively, suggesting a distinct increase in 

the average whisker-like features within the GF following plasma treatment. Even in the likely 

case that the treated GFs have a shifted Φ, to which we will return to discuss later, the field 

enhancement factors still remain significantly larger than those of the pristine samples as the Φ 

shifts are arithmetically minor. During hydrogen ion bombardment much residual a-C is 

removed, along with other non-graphitic organics. Alongside this there is general lattice etching 

and hydrogenation, the latter of which was initial supposed elsewhere in the case of carbon 

nanotubes28. This etching process generates a large number of the defects and sharp edges on the 

surface of the GF, hence modifying the local electric field, as evidenced.51 
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Though an increasing number of readily emitting edges are likely formed following plasma 

exposure, there are benefits associated with using hydrogen over other plasma precursor species. 

Shifts in the surface Φ are known to dramatically bolster the FE performance of nanocarbon 

emitters 52-56. Using a similar PE-CVD approach, Baldwin et al.57 reported an ID/IG ratio of ~2, 

resulting in graphene with an <La> of 8 nm. Increasing the defect and dangling bond density is 

likely to increase to propensity towards hydrogenation with notable increases in the number of 

terminated C–H bonds. Typically, observed reductions in La are due to hydrogenation, and 

possible graphane production, principally at domain boundaries. Baldwin et al. suggested a 

hydrogen content of < 10%,57 most of which is likely localised to the inter-granular defect zones. 

Under our optimized conditions, our Raman spectra suggest a partial hydrogenation, and thusly 

areal graphane content, of approximately 3%. Though low, this nevertheless suggests a potential 

decrease in the mean emitter surface work function of <0.1eV48, which, when considered in the 

context of a  quasi-metallic emitter with well-fitted Fowler-Nordheim tunneling, is sufficient to 

increase the beam current by around 30% at a given bias.  

 

In the case of H2 plasma treated carbon nanotubes, Zhi et al. showed a reduction in the turn-on 

field from 3.9 to 2.9 V/μm 51, whilst for Ar ion irradiation, Kim et al. and Qi et al. evidenced  

reductions from 5.5 to 2.0 V/μm and 3.9 to 2.2 V/μm, respectively 23, 58. It has been suggested 

that a surface Cδ− –Hδ+ dipole, which may reduce the electron affinity, result following H2 

plasma treatment, along with a high density of lattice defects following plasma treatment; both of 

which enhance the samples propensity to emit. It is also likely that the emission is further 

enhanced due to the removal of preferentially etched catalyst particles and the formation of 

extremely high aspect-ratio sub-nano tips, which may very well increase the local electronic field 

further.  

 

An increased number of localized defect states near or above the Fermi level enhance the 

emission given the higher tunneling probability, with the potential for inter-granular a-C and 

graphitic phases further enhancing the emission. These reactive defect sites readily emit, but also 

readily bind to various gaseous species in the ambient. It is this edge passivation which is central 

to the observed emission enhancement; hydrogenated edges present a low barrier of 4.1 eV, 

whilst this is increased to 4.6 for O2 passivated edges. Indeed, hydrogen passivation has been 

shown elsewhere to reduce Φ of graphitic carbons to as low as 3.98 eV, a reduction of around 0.5 

eV48, which has the theoretical potential to increase the field emission current by between one 

and two orders of magnitude59, consistent with our earlier empirical findings where we noted a 
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40-times increase in the maximum measured emission current density, Jmax. Indeed, fully H-

saturated (111) diamond surfaces have shown to reduce the Φ of the emitting surface by up to .4 

eV.60 

 

Direct exposure to an electron beam following exposure to ammonia vapour has also been shown 

to result in the formation of partially hydrogenated graphene, a consequence of the dissociation 

of absorbed H2O and NH3 sourcing H+ ions and hydrogen radicals.61 Indeed, it is likely that 

during electron emission chemisorbed H2O will dissociate and hydrogenate the graphene 

substrate. A ballasted-like emitter response will then be elicited, with these increasingly resistive 

hydrogenated zones controllably limiting the total current from dominating tips, allowing 

morphologically less-favorable tips to engage, thereby increasing the total emission current and 

emission uniformity.  

Graphene hydrogenation is reversible62. Heating hydrogenated graphene to temperatures of the 

order of 600oC induces near complete dehydrogenation63. Such dehydrogenation would likely 

revert, in part, the emission enhancements observed here, particularly those associated with the 

adjusted surface Φ. Significant heating is not uncommon during field emission measurements64, 

65, however; notwithstanding, this local hydrogenation via the electron beam assisted dissociation 

of chemisorbed H2O may largely counter-act the unavoidable thermally stimulated 

dehydrogenation of the graphene substrate. Nevertheless, such electron beam stimulated 

maintenance of the hydrogenation is certainly transient, and under maintained high-vacuum 

conditions will rapidly be exhausted compared to the typically year-long DC life-time of most 

field emission sources. 

 

Fig. 5 Emitter temporal and spatial uniformity. Example integrated intensity emission images of 

(a) pristine GF and (b) plasma treated GF cathodes (Scale bar: 5 mm). (c) Typical temporal 

stability profiles of the pristine and the treated GFs.  
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Integrated emission images of the pristine GF and treated GF cathodes are shown in Figure 5(a) 

and (b), respectively. All images were acquired with an emission current of 0.5 mA. Before 

plasma treatment, the image uniformity was very poor with a significant number of hot spots. 

Along with a near doubling of the apparent brightness, following plasma treatment the GF 

cathode showed a notable increase in emission uniformity; the pristine GF had a 38.8% variation 

(1σ) in emission uniformity, whilst following plasma treatment the GF showed only a 10.7% 

variation. It is likely that the plasma exposure increased the macro and microscopic uniformity of 

the emitter, preferentially etching those tips which would have otherwise dominated the 

emission. Such improvement in the spatial uniformity are similarly coupled to improved 

temporal stabilities. Figure 5(c) shows typical temporal stability profiles of the pristine and the 

treated GFs, measured at biases of 8 V/μm and 5 V/μm, respectively, in order to ensure the 

emission of equivalent currents. This is some 60% larger driving field necessary to stimulate an 

equivalent emission current which has clear practical ramifications. We note that the treated GF 

shows a significantly reduced temporal variation of only ±0.10%, compared to the pristine GF 

(±1.01%). As we have previously reported66, the pristine GF already offers somewhat impressive 

temporal stability, though our evidence suggests that plasma treatment of these already stable 

emitters further enhances their temporal stability, by around an order of magnitude. 

Hydrogenation has also been shown to increase the electrical resistance of bulk graphitic 

superstructures such as these67, commuting their transport characteristics from those of a semi-

metal to increasingly semi-conducting62. This shift functionally manifesting as an emission 

ballasting element, which further prevents the over emission from dominate sites. Nevertheless, 

it is also possible that the plasma treatment may increase the bulk resistivity of the emitter. As 

previously eluded; this may be an entirely deleterious outcome. Indeed, such modest increases, a 

say a few percent, will likely function as a ballast resistance. Indeed, as like many other research 

groups, we have previously studied the merits of integrated serial ballast resistances in their field 

emitters in order to current-limit the resistance68-70. Modestly increasing the effective bulk 

resistance of the treated GF foam relative to the pristine samples may in fact underpin the 

enhanced temporal stability observed. The bulk resistivity of the treated GF foam was 22.5±3.8 

Ωcm, only a few percent higher than the untreated sample. Plasma treatment did not significantly 

alter the bulk conductivity of the GF, which was suggested during SEM inspection given the 

consistent grey scales between images. 
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4.0 Conclusions 

Here the field emission behavior of multi-layer graphene foams treated by hydrogen plasma have 

been investigated and used to realise the first graphene-graphane hybrid electron emitter. The 

fabricated hydrogenated graphene emitters demonstrated greatly improved electron emission 

performance following hydrogen plasma treatment, with the graphene-graphane hybrids showing 

a 44%% reduction in turn-on field, a 394% increase in maximum emission current, and a four-

times improvement in emission uniformity. We rationalise the observed enhancement in the 

emission performance by the evolution of lattice defects and partial hydrogenation of the 

graphene substrate. This increases the geometrical enhancement factor of the graphitic 

superstructure whilst simultaneously augmenting the mean surface work function. We have 

shown that of the available plasma precursor gases, hydrogen may be one of the more affective 

in deriving a controlled etching and surface work function adjustment atmosphere. These results 

indicate that plasma treatment is an effective and widely applicable method to improve the field 

emission properties of many graphene-based field emission cathodes, with graphane emitters in 

particular being one such promising candidate material for future nanoengineered electron guns. 
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