91 research outputs found

    High-throughput genetic analysis and combinatorial chiral separations based on capillary electrophoresis

    Get PDF
    Capillary electrophoresis offers many advantages over conventional analytical methods, such as speed, simplicity, high resolution, low cost, and small sample consumption, especially for the separation of enantiomers. However, chiral method developments still can be time consuming and tedious. We designed a comprehensive enantioseparation protocol employing neutral and sulfated cyclodextrins as chiral selectors for common basic, neutral, and acidic compounds with a 96-capillary array system. By using only four judiciously chosen separation buffers, successful enantioseparations were achieved for 49 out of 54 test compounds spanning a large variety of pKs and structures. Therefore, unknown compounds can be screened in this manner to identify optimal enantioselective conditions in just one run. In addition to superior separation efficiency for small molecules, CE is also the most powerful technique for DNA separations. Using the same multiplexed capillary system with UV absorption detection, DNA sequencing of a short template was done without any dye-labels. Two internal standards were utilized to adjust the migration time variations among capillaries, so that the four electropherograms for the A, T, C, G Sanger reactions can be aligned and base calling can be completed with a level of high confidence. The CE separation of DNA can be applied to study differential gene expression as well. Combined with pattern recognition techniques, small variations among electropherograms obtained by the separation of cDNA fragments produced from the total RNA samples of different human tissues can be revealed. These variations reflect the differences in total RNA expression among tissues. Thus, this CE-based approach can serve as an alternative to the DNA array techniques in gene expression analysis

    Pseudomonas syringae Type III Effector HopZ1 Targets a Host Enzyme to Suppress Isoflavone Biosynthesis and Promote Infection in Soybean

    Get PDF
    SummaryType III secreted effectors (T3SEs), such as Pseudomonas syringae HopZ1, are essential bacterial virulence proteins injected into the host cytosol to facilitate infection. However, few direct targets of T3SEs are known. Investigating the target(s) of HopZ1 in soybean, a natural P. syringae host, we find that HopZ1 physically interacts with the isoflavone biosynthesis enzyme, 2-hydroxyisoflavanone dehydratase (GmHID1). P. syringae infection induces gmhid1 expression and production of daidzein, a major soybean isoflavone. Silencing gmhid1 increases susceptibility to P. syringae infection, supporting a role for GmHID1 in innate immunity. P. syringae expressing active but not the catalytic mutant of HopZ1 inhibits daidzein induction and promotes bacterial multiplication in soybean. HopZ1-enhanced P. syringae multiplication is at least partially dependent on GmHID1. Thus, GmHID1 is a virulence target of HopZ1 to promote P. syringae infection of soybean. This work highlights the isoflavonoid biosynthesis pathway as an antibacterial defense mechanism and a direct T3SE target

    Selective discrimination and classification of G-quadruplex structures with a host–guest sensing array

    Get PDF
    The secondary structures of nucleic acids have an important influence on their cellular functions but can be difficult to identify and classify quickly. Here, we show that an arrayed suite of synthetic hosts and dyes is capable of fluorescence detection of oligonucleotide secondary structures. Multivariate analysis of different fluorescence enhancements—generated using cationic dyes that show affinity for both DNA G-quadruplexes and the synthetic hosts—enables discrimination between G-quadruplex structures of identical length and highly similar topological types. Different G-quadruplexes that display the same folding topology can also be easily differentiated by the number of G-quartets and sequence differences at the 3′ or 5′ ends. The array is capable of both differentiation and classification of the G-quadruplex structures at the same time. This simple non-invasive sensing method does not require the discovery and synthesis of specific G-quadruplex binding ligands, but employs a simple multicomponent approach to ensure wide applicability

    Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation

    Full text link
    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∼16nM and ∼57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems

    Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis

    Full text link
    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression

    Nanomaterials in fluorescence-based biosensing

    Get PDF
    Fluorescence-based detection is the most common method utilized in biosensing because of its high sensitivity, simplicity, and diversity. In the era of nanotechnology, nanomaterials are starting to replace traditional organic dyes as detection labels because they offer superior optical properties, such as brighter fluorescence, wider selections of excitation and emission wavelengths, higher photostability, etc. Their size- or shape-controllable optical characteristics also facilitate the selection of diverse probes for higher assay throughput. Furthermore, the nanostructure can provide a solid support for sensing assays with multiple probe molecules attached to each nanostructure, simplifying assay design and increasing the labeling ratio for higher sensitivity. The current review summarizes the applications of nanomaterials—including quantum dots, metal nanoparticles, and silica nanoparticles—in biosensing using detection techniques such as fluorescence, fluorescence resonance energy transfer (FRET), fluorescence lifetime measurement, and multiphoton microscopy. The advantages nanomaterials bring to the field of biosensing are discussed. The review also points out the importance of analytical separations in the preparation of nanomaterials with fine optical and physical properties for biosensing. In conclusion, nanotechnology provides a great opportunity to analytical chemists to develop better sensing strategies, but also relies on modern analytical techniques to pave its way to practical applications
    • …
    corecore