145 research outputs found

    Nonlinearity in the Dark: Broadband Terahertz Generation with Extremely High Efficiency

    Get PDF
    Plasmonic metamaterials and metasurfaces offer new opportunities in developing high performance terahertz emitters and detectors beyond the limitations of conventional nonlinear materials. However, simple meta-atoms for second-order nonlinear applications encounter fundamental trade-offs in the necessary symmetry breaking and local-field enhancement due to radiation damping that is inherent to the operating resonant mode and cannot be controlled separately. Here we present a novel concept that eliminates this restriction obstructing the improvement of terahertz generation efficiency in nonlinear metasurfaces based on metallic nanoresonators. This is achieved by combining a resonant dark-state metasurface, which locally drives nonlinear nanoresonators in the near field, with a specific spatial symmetry that enables destructive interference of the radiating linear moments of the nanoresonators, and perfect absorption via simultaneous electric and magnetic critical coupling of the pump radiation to the dark mode. Our proposal allows eliminating linear radiation damping, while maintaining constructive interference and effective radiation of the nonlinear components. We numerically demonstrate a giant second-order nonlinear susceptibility around Hundred-Billionth m/V, a one order improvement compared with the previously reported split-ring-resonator metasurface, and correspondingly, a 2 orders of magnitude enhanced terahertz energy extraction should be expected with our configuration under the same conditions. Our study offers a paradigm of high efficiency tunable nonlinear metadevices and paves the way to revolutionary terahertz technologies and optoelectronic nanocircuitry.Comment: 6 pages, 4 figure

    Comparison of astigmatism correction and visual outcomes in mix-and-match implantations of trifocal intraocular lenses with femtosecond laser-assisted arcuate keratotomy and contralateral bifocal Toric intraocular lenses

    Get PDF
    IntroductionAstigmatism reduces the postoperative visual performance after non-toric intraocular lenses (IOLs) implantation, and limits the use of refractive IOLs in cataract surgery. The purpose of this study was to compare the efficacy in astigmatism correction and the postoperative visual outcomes between the implantation of a trifocal IOL with femtosecond laser-assisted arcuate keratotomy (FSAK) in one eye and a bifocal toric IOL (TIOL) in the other, in patients with cataract and moderate astigmatism.MethodsThis prospective observational paired-eye study enrolled patients with cataract and corneal astigmatism (CA) between 0.75 and 2.25 D in both eyes. The patients underwent a mix-and-match treatment comprising trifocal IOL implantation with FSAK and bifocal TIOL implantation. We compared the visual acuity (VA) at all distances, defocus curve, postoperative refractive astigmatism (RfA), CA, high-order aberrations, modulation transfer function (MTF) curve, and Strehl ratio between the two eye groups.ResultsIn total, 41 patients (82 eyes) were enrolled and completed a 6-month follow-up. The 1- and 3-month uncorrected distance VA and 3-month uncorrected near VA were greater in eyes with bifocal TIOLs than with trifocal IOLs and FSAK (p = 0.036, 0.010, and 0.030, respectively), whereas the latter had greater uncorrected intermediate VA at every visit and greater VA in the intermediate range of defocus curve (at −1.50 and − 2.00 D) than the eyes with bifocal TIOLs. The postoperative RA of the eyes with trifocal IOL and FSAK was significantly higher than that of the bifocal TIOL-implanted eyes at the 3- and 6-month follow-ups.DiscussionBoth FSAK and TIOL implantation effectively reduce pre-existing moderate astigmatism in patients with cataract. The eyes with bifocal TIOLs had more stable long-term astigmatism correction, whereas those with trifocal IOLs and FSAK had better intermediate VA. Therefore, a mix-and-match implantation of trifocal IOL with FSAK and contralateral bifocal TIOL could achieve effective astigmatism correction and provide an overall optimal VA

    APICom: Automatic API Completion via Prompt Learning and Adversarial Training-based Data Augmentation

    Full text link
    Based on developer needs and usage scenarios, API (Application Programming Interface) recommendation is the process of assisting developers in finding the required API among numerous candidate APIs. Previous studies mainly modeled API recommendation as the recommendation task, which can recommend multiple candidate APIs for the given query, and developers may not yet be able to find what they need. Motivated by the neural machine translation research domain, we can model this problem as the generation task, which aims to directly generate the required API for the developer query. After our preliminary investigation, we find the performance of this intuitive approach is not promising. The reason is that there exists an error when generating the prefixes of the API. However, developers may know certain API prefix information during actual development in most cases. Therefore, we model this problem as the automatic completion task and propose a novel approach APICom based on prompt learning, which can generate API related to the query according to the prompts (i.e., API prefix information). Moreover, the effectiveness of APICom highly depends on the quality of the training dataset. In this study, we further design a novel gradient-based adversarial training method {\atpart} for data augmentation, which can improve the normalized stability when generating adversarial examples. To evaluate the effectiveness of APICom, we consider a corpus of 33k developer queries and corresponding APIs. Compared with the state-of-the-art baselines, our experimental results show that APICom can outperform all baselines by at least 40.02\%, 13.20\%, and 16.31\% in terms of the performance measures EM@1, MRR, and MAP. Finally, our ablation studies confirm the effectiveness of our component setting (such as our designed adversarial training method, our used pre-trained model, and prompt learning) in APICom.Comment: accepted in Internetware 202

    Localized primary gastrointestinal diffuse large B cell lymphoma received a surgical approach: an analysis of prognostic factors and comparison of staging systems in 101 patients from a single institution

    Get PDF
    Clinical characteristics and survival rate of patients with localized PG-DLBCL. It shows the clinical characteristics and Rituximab treatment between localized PG-DLBCL patients with surgery and those with chemotherapy alone. (PDF 276 kb

    Virtual reality-induced motor function of the upper extremity and brain activation in stroke: study protocol for a randomized controlled trial

    Get PDF
    BackgroundThe benefits of virtual reality (VR)-based rehabilitation were reported in patients after stroke, but there is insufficient evidence about how VR promotes brain activation in the central nervous system. Hence, we designed this study to explore the effects of VR-based intervention on upper extremity motor function and associated brain activation in stroke patients.Methods/designIn this single-center, randomized, parallel-group clinical trial with a blinded assessment of outcomes, a total of 78 stroke patients will be assigned randomly to either the VR group or the control group. All stroke patients who have upper extremity motor deficits will be tested with functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and clinical evaluation. Clinical assessment and fMRI will be performed three times on each subject. The primary outcome is the change in performance on the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE). Secondary outcomes are functional independence measure (FIM), Barthel Index (BI), grip strength, and changes in the blood oxygenation level-dependent (BOLD) effect in the ipsilesional and contralesional primary motor cortex (M1) on the left and right hemispheres assessed with resting-state fMRI (rs-fMRI), task-state fMRI (ts-fMRI), and changes in EEG at the baseline and weeks 4 and 8.DiscussionThis study aims to provide high-quality evidence for the relationship between upper extremity motor function and brain activation in stroke. In addition, this is the first multimodal neuroimaging study that explores the evidence for neuroplasticity and associated upper motor function recovery after VR in stroke patients.Clinical trial registrationChinese Clinical Trial Registry, identifier: ChiCTR2200063425

    Graded-index breathing solitons from Airy pulses in multimode fibers

    Get PDF
    Breathing solitons, as localized wave packets with a periodic evolution in amplitude and duration, are able to model extreme wave events in complex nonlinear dispersive systems. We have numerically studied the formation and manipulation of graded-index breathing solitons embedded in nonlinear multimode fibers based on a single nonlinear Schrödinger equation that includes the spatial self-imaging effect through a periodically varying nonlinear parameter. Through changing specific parameters of the input optical field, we can manipulate the period and depth of graded-index breathing soliton dynamics under different relative strengths between the dispersion length and the self-imaging period of the multimode fiber. Our study can explicitly derive a robust mechanism to control the behavior of the breathing localized structure directly and contribute to a better understanding of the much more complex nonlinear graded-index soliton dynamics in multimode fibers

    Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit

    Get PDF
    As the most abundant phenolic acid in peach fruit, chlorogenic acid (CGA) is an important entry point for the development of natural dietary supplements and functional foods. However, the metabolic and regulation mechanisms underlying its accumulation in peach fruits remain unclear. In this study, we evaluated the composition and content of CGAs in mature fruits of 205 peach cultivars. In peach fruits, three forms of CGA (52.57%), neochlorogenic acid (NCGA, 47.13%), and cryptochlorogenic acid (CCGA, 0.30%) were identified. During the growth and development of peach fruits, the content of CGAs generally showed a trend of rising first and then decreasing. Notably, the contents of quinic acid, shikimic acid, p-coumaroyl quinic acid, and caffeoyl shikimic acid all showed similar dynamic patterns to that of CGA, which might provide the precursor material basis for the accumulation of CGA in the later stage. Moreover, CGA, lignin, and anthocyanins might have a certain correlation and these compounds work together to maintain a dynamic balance. By the comparative transcriptome analysis, 8 structural genes (Pp4CL, PpCYP98A, and PpHCT) and 15 regulatory genes (PpMYB, PpWRKY, PpERF, PpbHLH, and PpWD40) were initially screened as candidate genes of CGA biosynthesis. Our findings preliminarily analyzed the metabolic and molecular regulation mechanisms of CGA biosynthesis in peach fruit, which provided a theoretical basis for developing high-CGA content peaches in future breeding programs
    • …
    corecore