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Abstract: Breathing solitons, as localized wave packets with a periodic evolution in 
amplitude and duration, are able to model extreme wave events in complex nonlinear 
dispersive systems. We have numerically studied the formation and manipulation of graded-
index breathing solitons embedded in nonlinear multimode fibers based on a single nonlinear 
Schrödinger equation that includes the spatial self-imaging effect through a periodically 
varying nonlinear parameter. Through changing specific parameters of the input optical field, 
we can manipulate the period and depth of graded-index breathing soliton dynamics under 
different relative strengths between the dispersion length and the self-imaging period of the 
multimode fiber. Our study can explicitly derive a robust mechanism to control the behavior 
of the breathing localized structure directly and contribute to a better understanding of the 
much more complex nonlinear graded-index soliton dynamics in multimode fibers. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction
Multimode waveguides, benefiting from an additional and new dimension in optical wave 
propagation, can arise with much richer qualitatively-new physical behaviors than that 
provided by a single spatial mode equivalent. They have attracted considerable attention in 
recent years regarding their applications in optical communication [1,2], spatial-temporal 
soliton dynamics [3], ultrafast photonics [4,5], and many other areas. Particularly, multimode 
fibers (MMFs) are becoming a promising solution to improve the capability of the next-
generation telecommunication systems owing to the spatial division multiplexing technique 
[6]. Concerning the ultrafast photonics applications, the output power from multimode mode-
locked fiber lasers where many longitudinal and transverse modes are coherently 
superimposed together to create ultrashort pulses [5], can be substantially scaled up compared 
to their traditional single-mode counterparts [7–9]. Different from the single-mode fibers, 
inside MMFs the nonlinear intermodal coupling effect is typically existing and can achieve a 
rich variety of spatiotemporal nonlinear effects [10–14] even though linear modal coupling 
like intermodal group dispersion is negligible. Whereas, the propagation dynamics of 
nonlinear optical pulses in a graded-index (GRIN) MMF, featuring very low inter-modal 
group dispersion and controllable spatiotemporal nonlinear effects, have aroused increasing 
interest in recent years [15–17]. In light of these previous investigations, a better and deeper 
understanding of the nonlinear soliton dynamics in MMFs is now imperative. 

One of the most important subjects within nonlinear science is to investigate and explore 
the localized structures occurring in nonlinear physical systems. Breathing solitons, which are 
a fundamentally new form of self-localized structures featuring periodic oscillations in time 
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or space, can exist widely in nonlinear physical systems, such as Bose-Einstein condensates 
[18], granular lattices [19], hydrodynamics [20], optics [21] and so on. In contrast to 
traditional fundamental solitons with unchangeable temporal shape during the propagation, 
the breathing solitons experience compression and stretching regularly (periodically) in the 
time domain. Similar to Kuznetsov-Ma (KM) and Akhmediev breathers (ABs) predicted by 
the exact solutions of an underlying integrable model [21], breathing solitons are also related 
to the periodic energy exchange between the spectral components that are located at the 
center and the wings [22]. To date, the breathing soliton dynamics have been mainly 
investigated and explored in single-mode fibers [21] and optical microresonators [23–26]. It 
is worth noting that, the breathing state of solitons can also exist in MMFs since solitons 
composed of multiple spatial modes are able to experience a synchronized periodic oscillation 
in terms of amplitude and duration especially in GRIN MMFs with negligible intra-modal 
dispersion. More importantly, the investigation involving on the breathing soliton dynamics 
and corresponding mechanisms behind in MMFs will further extend their range of 
applications in different nonlinear physical systems and complete the fundamental theory of 
breathing soliton dynamics. However, the science and physics of optical breathing solitons in 
MMFs remain elusive, to the best of our knowledge, due to the three dimensional spatial 
features which add complexity to the simulation model [10,17]. Many questions about 
graded-index multimode breathers, such as the dynamics with spatial self-imaging effects 
included [8,12], are still raised to be solved. Recently, the stability of optical solitons in GRIN 
MMFs was studied in [27] to give a first fundamental understanding of the underlying 
multimode soliton dynamics by solving a single effective nonlinear Schrödinger equation 
(NLSE) derived by Conforti et al [28]. 

Besides, it is also worth noting that the wave packets in the form of Airy function have 
many unique properties in the nonlinear propagation media [29–31]. For example, the Airy 
pulses can be transformed into solitons and the excessive energy is shed into the low-intensity 
dispersive background radiation [29]. The interference process can be formed between them 
that gives rise to the observed oscillations [32]. Furthermore, the Airy pulses are able to move 
in a ballistic trajectory [33–35]. This means that the collision can occur between both 
temporally separated, co-propagating Airy pulses with in-phase. Hence, the stable bound and 
oscillating states can be achieved because of the momentum and energy exchange [36–38]. 
Therefore, the Airy pulses can be implemented to provide an appropriate technical route to 
observe the breathing soliton dynamics. 

In this paper, we focus on forming and manipulating the typical localized wave packets of 
breathing soliton states in the nonlinear GRIN MMF system, aiming to present first insights 
into a fundamentally new type of multimode pulse dynamics. We find that the single soliton 
shedding from the Airy pulse can form the breathing state exhibiting a periodic oscillatory 
behavior. In addition, the breathing period and depth can be controlled by the peak power and 
truncation coefficient of the Airy pulse. We also discuss the generation dynamics of breathing 
solitons with a large frequency and depth created by the interaction between two shifted 
counter-propagating Airy pulses. Our results constitute a significant contribution to the 
emerging field of the complex spatiotemporal multimode systems that attracts growing 
interest in recent years. 

2. Propagation model 
With appropriate launching conditions in GRIN MMFs a large number of transverse modes 
can be excited, the spatial-temporal nonlinear propagation of which, as well as the overall 
superimposed field, can be modeled by the following Gross-Pitaevskii equation based on the 
paraxial and slowly varying envelope approximations [12,17,28]: 
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where E is the slowly varying electric-field envelope, 0 0 0 /k n cω= is the wave number at 0ω
, r is the fiber core radius, Δ denotes the relative index difference between the cladding and 
the centre of the fiber, 2β corresponds to the group-velocity dispersion, and 2n is the Kerr 

coefficient. This equation can be numerically solved by the split-step Fourier-transform 
method [39], but requires a lot of computation time because of its (3 + 1) D nature. 

In the linear or weakly/moderately nonlinear regime, the beam propagation in GRIN 
MMFs experiences the spatial self-imaging effect which is characterized by the periodic 
variation of specific beam parameters along the propagation distance [40,41]. In other words, 
when the injected field is a Gaussian beam the evolving optical field will remain 
approximately Gaussian while its width oscillates and recovers to its input value at certain 
distances. The amplitude of the known Gaussian beam takes the following form [27,28]: 
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where 0w is the spot size of the input beam, 2 2
2 0 0 0 0/ 2p n w P nβ= is a dimensionless parameter 

associated with the beam collapse, and / 2pZ rπ= Δ is the spatial self-imaging period of a 

GRIN MMF at which the oscillated beam width w recovers to its initial value 0w . 

Assuming that during propagation the self-imaging pattern of the beam remains steady 
and the effect of nonlinearity on the self-imaging pattern can be neglected, the solution of Eq. 
(1) can be written as ( , , , ) ( , ) ( , , )E x y z T A z T F x y z= ⋅ . The (3 + 1) D problem can be reduced 

to the following quasi-one-dimensional NLSE that is much faster to solve: 
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resulting from the GRIN-induced self-imaging effect. More details about the quasi-one-
dimensional NLSE model developed by Conforti at al. can be found in their recent work [28]. 

It is common to normalize NLSE to describe the pulse propagation in fibers using the 
following dimensionless variables [39]: 

 0 0/ , / , ( , ) ( , ) /Dz L T T U A z T Pξ τ ξ τ= = =  (5) 

where ,ξ τ and U correspond to the normalized propagation distance, time, and pulse 

envelope with regards to the dispersion length 2
0 2/ | |DL T β= , initial pulse duration 0T , and 

peak power 0P , respectively. These give the following normalized NLSE: 
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Here, 0 DN P Lγ= is the soliton order number, and the periodic function ( )g ξ is defined as 
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It is worth noting that the optical pulse propagation dynamics have no qualitative difference 
for any values of C in the range 0.1-10 [27]. Here, we choose C = 0.3, showing that during 
each self-imaging cycle the beam width is compressed by a factor of nearly 1.8. The 
parameter q represents the ratio of the dispersion length to the spatial self-imaging period of a 
GRIN MMF. For a typical GRIN MMF ( =r 25 μm, =0.01Δ , n2 = 203.2 10−× m2/W, β2 = −20 
ps2/km at the wavelength of around 1550 nm), the corresponding self-imaging period Zp can 
be less than 1 mm while the fiber dispersion length LD is more than 10 cm for T0>0.1 ps. The 
resulting value of q is then greater than 100. Thus, within one dispersion length the spatial 
beam width will vary periodically with hundreds of times. Recently Ahsan et al. investigated 
the stability of optical solitons in GRIN MMFs as the spatial width can vary significantly 
compared to the temporal width [27]. The same approach can be used to predict the breathing 
evolution behavior of optical pulses inside GRIN MMFs. The selected two q values (100 and 
1) in the simulation here correspond to the particular cases where the dispersion length is
much larger than or just approaching the spatial self-imaging period. It should be noted that,
the occasion of q = 1 does not actually exist where the temporal variation can remarkably
affect the spatial oscillation of the beam. This q value can still be chosen and used for
comparison to gain physical insight into complex spatial-temporal dynamics inside GRIN
MMFs.

We need to stress that the most-complete model in GRIN MMFs is based on coupled 
modes theory of optical fields, which can decompose the solitons’ spectrum into a sum of 
spatial functions associated with individual modes [17,42]. With the coupled-mode technique, 
one needs to handle the number of modes involved in calculations. Generally, large core 
MMFs can support several hundred of modes and thus the numerical calculations become 
time consuming and complex. The model adopted here allows the simulations of long fiber 
lengths with manageable computation time although the spatial evolution of the propagating 
beam cannot be studied. Recent studies show that this model is effective and numerically 
feasible when the injected optical field excites a large number of modes [13,28].However, it 
cannot be used for studying multimode solitons composing of a few low-order modes. 

3. Result and discussion

3.1 GRIN breathing solitons shedding from a single Airy pulse 

Breathing solitons are a solitary wave in which energy is localized in time but oscillates in 
space, or vice versa. The quasi-one-dimensional NLSE with longitudinal varying nonlinear 
coefficient [43] provides an approach to simulate the spatiotemporal nonlinear dynamics, 
including the geometric parametric instability [12,16] or the ultra-broadband dispersive waves 
[3,13]. Particularly, it can also be used to predict the existence of stable GRIN breathing 
solitons in MMFs pumped by a finite-energy Airy pulse. The advantage of the Airy pulses 
with respect to conventional symmetric counterparts, such as Gaussian or Hyperbolic secant 
pulses, lies in that their spectral phase (the cubic term) introduces an additional degree of 
freedom for manipulation [29]. Here, we employ the exponentially decaying asymmetric Airy 
pulse as the injected light field, as follows: 

( 0, ) ( ) ( ) exp( )U R K a Ai aξ τ τ τ= = ⋅ ⋅ ⋅ ⋅  (8)
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where a (0<a<1) is the truncation coefficient, and K(a) is a truncation-dependent normalized 
coefficient, and R is a dimensionless parameter that we can vary to scale the Airy pulse 
intensity. 

Representative simulation results for the exponentially decaying Airy pulse (R = 1, a = 
0.3) launched into a GRIN MMF are shown in Fig. 1. Figures 1(a) and 1(e) illustrate the 
dynamics of an Airy pulse in the temporal and spectral domains, respectively, under the 
situation where the dispersion length LD is much larger than the spatial self-imaging period Zp 
(q = 100). A soliton can be formed from the Airy pulse while its area obeys the soliton 
formation criterion [44]. It can be seen from Fig. 1(a) that the soliton cleans itself out by 
shedding a temporal continuum. The continuum traveling away from the soliton in both 
directions corresponds to the components that are moving faster or slower than the soliton. 
Similar to the fundamental solitons, these pulses can resist group-velocity dispersion and 
adjust adiabatically based on perturbations such as the periodically spatial oscillation induced 
by self-imaging. When the soliton is fully developed, the pulse starts to enter the breathing 
state showing periodical stretching and compression behaviors in the time domain. Figure 
1(b) also shows that it takes about three dispersion lengths to accomplish the transition from 
an Airy pulse to the breathing soliton. Figure 2(a) shows the shortest and the longest temporal 
profiles when the soliton breathes. The temporal breathing ratio of the peak power is nearly 
1.2. The broadest and narrowest spectra within the breathing state are shown in Fig. 2(b) for 
comparison, which also indicates that the intensity increases in the middle but decreases at 
both wings. It is a clear illustration of the energy exchange between the center and the wings. 

 

Fig. 1. Simulations of multimode breathing soliton dynamics. Temporal (top) and spectral 
(bottom) evolutions of the fundamental multimode soliton shedding from Airy pulses. Left 
column corresponds to the case of q = 100 while right column to q = 1. (b) and (d) show the 
peak power evolutions of the breathing solitons. In both cases, intensity is color-coded on a 30 
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dB scale. The periodic compression (CP) and stretching (SP) over one breathing period are 
indicated by a black dashed line and a red one, respectively. 

For breathing solitons formed in a GRIN MMF, one significant difference from 
Akhmediv breathers (ABs) is that energy located in both wings of their spectrum can return to 
a set of spectral components around the central part [see Fig. 2(b)] in contrast to the 
corresponding energy returning to the single pump for ABs. This is attributed to the fact that 
the breathing soliton in the GRIN MMF is remaining as a single pulse during propagation, 
while the ABs totally recover to a continuous wave in Fermi-Pasta-Ulam recurrence [22]. 
This difference indicates how the breathing soliton dynamics in the framework of GRIN 
multimode waveguides are distinct from those in the single-mode waveguide and illustrates 
how the spatial self-imaging effects break the system’s integrability and affect the breather 
behavior. 

 

Fig. 2. Temporal and spectral profiles of the breathing soliton. The shortest and the longest 
temporal profiles (a) and the corresponding spectral profiles (b) for a multimode breathing 
soliton over one breathing cycle for the case shown in Fig. 1(a). The blue (brick-red) curve in 
the figure corresponds to the temporal and spectral profiles at the maximal compression 
(stretching) instant when the breathing soliton is excited. 

The propagation dynamics of breathing solitons are also largely determined by the relative 
magnitude between the spatial self-imaging period Zp and the dispersion length LD. When Zp 
approaches LD (q approaches unity), resonant dispersive radiations can be emitted due to the 
soliton perturbation introduced by both of the characteristic spatial oscillation and the 
resulting periodic nonlinear coefficient [13,28]. The spectral component for these dispersive 
waves can be predicted by the resonance condition given in [45]. The temporal and spectral 
evolution of an injected Airy pulse with q = 1 are also elucidated given in Figs. 1(c) and 1(f), 
respectively. The periodic evolution over 40 LD is still maintained acceptable despite that the 
breathing soliton is not stable in this limiting case. During the pulse evolution, the temporal 
profiles of the breathing solitons feature pulsating ripples but still remain sufficiently 
localized. It is not difficult to find from Fig. 1(c) that the dispersive waves that are 
periodically emitted away from the solitary wave are weakened gradually as the propagation 
distance increases. This is expected because the resonance can induce emission of dispersive 
waves until the amplitude of the solitary wave does not satisfy the resonance width 
determined by Zp. From Fig. 1(d) we can see that the peak power evolution of the breathing 
soliton changes nearly periodically while the fast and irregular intensity oscillations can be 
identified for each breathing period. This behavior is similar to the pump power evolution for 
the parametric resonance breathers within the periodically modulated dispersion single-mode 
fiber [46]. These can be attributed to both the power decay in the form of the persistent 
dispersive wave emissions and the adiabatically reshaped pulse through the periodic 
perturbation given by ( )g ξ during each breathing cycle. 
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To gain deeper insight into the breathing dynamics of GRIN multimode solitons, we 
investigate and explore the relations between the amplitude modulations of formed breathing 
solitons and the intensity of the launched Airy pulse. The intensity of the launched Airy pulse 
can be given by: 
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8 3
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which is highly dependent on two parameters, the pump laser power R and the truncation 
coefficient a . Figure 3(a) shows that the peak power of the breathing soliton as a function of 
the propagation distance for different pump power values R ranging from 0.9 to 1.2 when the 
truncation coefficient is fixed at 0.3. We define the breathing depth as

max min max min( ) / ( )P P P P− + , where max (min)P is the maximum (minimum) peak power during 

each breathing cycle. The soliton breathing depth and the breathing period are slightly 
decreasing with the launched power R. As is shown in Fig. 3(b), both the pulse breathing 
depth and period show a similar tendency as in Fig. 3(a) for the launched Airy pulse with a 
constant peak power R but the decreasing truncation coefficient a . This behavior is similar to 
the result in [29], where the dispersive waves in the form of excess energy shedding from the 
Airy pulse can have an impact on the evolved soliton breathing period through their 
interference effect. It is worth noting that with longer propagation distance this system can 
ultimately revert to a complex dynamical system that is approaching critical transitions. In the 
present case, the critical event exhibits the loss of single soliton induced by spatiotemporal 
instability. 

 

Fig. 3. Peak powers of the breathing soliton as a function of the propagation distance in terms 
of dispersion length for different launched peak powers R (a) and selected truncation 
coefficients a (b). 

3.2 GRIN breathing solitons formed by the interaction of both Airy pulses with in-
phase 

Bright breathing solitons in GRIN MMFs are clearly observed and comprehensively modeled. 
The GRIN breathing soliton generally features a small breathing frequency (reciprocal of 
breathing period) and a weak breathing depth even after optimization through adjusting both 
the peak power and truncation coefficient of the incident Airy pulse. The Airy pulses are able 
to decelerate or accelerate (depending on their tail direction) during propagation based on 
their unique ballistic propagation feature [34] and allow for collisions between counter-
propagating pulses with the same center frequency. To obtain breathing solitons with a high 
breathing frequency and depth, we consider the input optical fields that are consisted of a pair 
of well-separated counter-propagating Airy pulses with in-phase as follows: 

 1 1 1 1( 0, ) ( ) { ( ) exp[ ( )]+ [ ( )]exp[ ( )]},U R K a Ai T a T Ai T a Tξ τ τ τ τ τ= = ⋅ ⋅ − − − + − + (10) 
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where arbitrary real constants T1 stands for the time interval between both Airy pulses. For 
simplicity, we let a = 0.2 and R = 1 and only vary T1. Both Airy pulses can encounter and 
interact with each other in a ballistic route through adjusting T1, from which a soliton 
breathing state is then created with a high breathing frequency and depth. 

Figure 4 shows the temporal and spectral evolution process of the interaction between in-
phase Airy pulses with a temporal separation T1 = 2 for different q values of 1 and 100. 
Although both counter-propagating Airy pulses are well separated by 2T1, the ballistic 
trajectories of Airy pulses would intersect and then strongly interact with each other through 
the nonlinearity modulated by the spatial oscillation. For q = 100, the two Airy components 
can form bound breathing solitons with a specific period. This is significantly different from 
multi-dimensional vector solitons formed by the interaction between in-phase solitons with 
separated frequencies in two degenerate LP11 modes of a step-index MMF [47]. As can be 
seen clearly from Figs. 4(a) and 4(c), the bound breathing state exhibits an oscillating 
structure with pulses breathing in both temporal and spectral domain as expected from higher-
order soliton theory without perturbations [27]. In contrast, Figs. 4(b) and 4(d) present the 
simulation results in the case of q = 1. Owing to the bound soliton resonances [45] through 
the periodic perturbation induced by spatial self-imaging effect, the bound solitons in the 
compression stage are emitting dispersive radiations periodically until entering into the 
stretching stage. In the second compression stage, similar dispersive waves are emitted again 
while the bound solitons are splitting into two solitons with almost identical amplitude under 
resonant conditions. 

 

Fig. 4. Temporal (top) and spectral (bottom) evolutions over 50LD for the interaction between 
both in-phase Airy pulses inside a GRIN MMF with q = 100 (a, c) and q = 1 (b, d). The 
intensity is coded on a decibel scale using dimensionless variables. 

What we need to find out now is whether the bound breathing solitons propagate 
persistently and stably inside a GRIN MMF when a dispersion length LD is much larger than 
the spatial self-imaging period Zp. In this situation, we require to extend the propagation 
length of the bound solitons. In Figs. 5(a) and 5(b), we have observed such bound breathing 

                                                                Vol. 27, No. 2 | 21 Jan 2019 | OPTICS EXPRESS 490 



solitons propagating over one hundred dispersion lengths, which shows sufficient stability for 
the bound breathing solitons. Both temporal and spectral evolutions display the oscillation 
characteristics with a specific period. Different from the breathing dynamics of higher-order 
GRIN solitons [27], the periodic evolution pattern exhibited by the bound breathing solitons 
can be controlled by adjusting the initial time interval between both launched Airy pulses. 
The peak power versus the propagation distance is shown in Fig. 5(c) for varying initial time 
intervals T1. When the interval value (|2T1|) is decreasing, the magnitude of the nonlinear 
interaction between two Airy components increases and the bound breathing solitons are 
formed with higher breathing frequency and depth. The highest breathing depth that can be 
obtained is about 40% [see the green curve in Fig. 5(c)]. It is worth noting that in the special 
case with T1 = 1 the breathing frequency of formed bound states is the highest while its depth 
is smallest. We can attribute this to the following fact: the main lobes of both Airy pulses with 
T1 = 1 are located at about zero and the generated solitons are directly shedding from the main 
lobes of Airy pulses, which is responsible for behaving along straight lines without the 
acceleration of the main lobes. This scenario corresponds to that of the second-order solitons, 
which are formed by two in-phase identical components superimposed in the temporal 
domain. 

 

Fig. 5. Breathing solitons with a high breathing frequency and depth formed by the interaction 
between in-phase Airy pulses with varying time intervals in GRIN MMF. Temporal (a) and 
spectral (b) evolution of interaction between both Airy pulses with T1 = −1. (c) Peak power of 
pulses versus propagation distance for different time intervals. 

4. Conclusion 
In conclusion, we have numerically demonstrated the formation and manipulation of 
breathing solitons in GRIN MMFs. Based on the variational method, the propagation 
dynamics of optical pulses within a GRIN MMF are modeled by a single NLSE including the 
spatial self-imaging effect through a longitudinally varying nonlinear coefficient. Results 
show that the breathing soliton can be excited from a single Airy pulse inside a GRIN fiber 
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under conditions where the dispersion length is much larger than or near the spatial self-
imaging period. Depending on the peak power evolution of the input optical pulse and formed 
soliton, we find that the breathing soliton exhibits periodic stretching and compression in the 
temporal domain. Furthermore, the dispersive waves are periodically emitted away from the 
breathing solitons under the condition with q = 1. In view of the unique ballistic propagation 
feature of the Airy pulses, we consider the interaction between both time-reversal Airy pulses 
with in-phase to obtain the bound breathing states with a high breathing frequency and depth. 
By adjusting the time intervals between both launched Airy pulses the breathing frequency 
and depth of the corresponding bound states can be controlled. The obtained highest depth of 
breathing solitons is about 40%, which is close to the depth of breather solitons in an optical 
microresonator [24]. Our results can contribute to the understanding of the complex graded-
index soliton dynamics and new spatiotemporal phenomena in nonlinear multimode fibers. 
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