119 research outputs found

    Robust Unsupervised Cross-Lingual Word Embedding using Domain Flow Interpolation

    Full text link
    This paper investigates an unsupervised approach towards deriving a universal, cross-lingual word embedding space, where words with similar semantics from different languages are close to one another. Previous adversarial approaches have shown promising results in inducing cross-lingual word embedding without parallel data. However, the training stage shows instability for distant language pairs. Instead of mapping the source language space directly to the target language space, we propose to make use of a sequence of intermediate spaces for smooth bridging. Each intermediate space may be conceived as a pseudo-language space and is introduced via simple linear interpolation. This approach is modeled after domain flow in computer vision, but with a modified objective function. Experiments on intrinsic Bilingual Dictionary Induction tasks show that the proposed approach can improve the robustness of adversarial models with comparable and even better precision. Further experiments on the downstream task of Cross-Lingual Natural Language Inference show that the proposed model achieves significant performance improvement for distant language pairs in downstream tasks compared to state-of-the-art adversarial and non-adversarial models

    Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex

    Get PDF
    Abstract(#br)Nanoplastic pollution is widespread and persistent across global water systems and can cause a negative effect on aquatic organisms, especially the zooplankter which is the keystone of the food chain. The present study uses RNA sequencing to assess the global change in gene expression caused by 21 days of exposure to 75 nm polystyrene (PS) nanoplastics on Daphnia pulex , a model organism for ecotoxicity . With the threshold value at P value 2, 244 differentially expressed genes were obtained. Combined with real-time PCR validation of several selected genes, our results indicated that a distinct expression profile of key genes, including downregulated trehalose transporter , trehalose 6-phosphate synthase/phosphatase, chitinase and cathepsin-L as well as upregulated doublesex 1 and doublesex and mab-3 related transcription factor-like protein, contributed to the toxic effects of chronic nanoplastic exposure on Daphnia , such as slowed growth, subdued reproductive ability and reproductive pattern shifting. Our study also showed that chronic exposure to nanoplastic changed the sex ratio of D. pulex neonates. By integrating the gene expression pattern in an important model organism, this study gained insight into the molecular mechanisms of the toxic effect of chronic PS nanoplastic exposure on D. pulex , which may also extend to other nanoplastics or aquatic animals

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    RESEARCH ON DAMAGE ZONE IN STRESS FIELD INTENSITY METHOD

    No full text
    In view of the controversial problem of damage zone in stress field intensity method,a method was proposed to determine damage zone by stress contour. Stress contour calculating steps were given. The example was given to demonstrate the calculating process. The result of the example analysis shows that the damage zone is not a regular and spherical zone,but is irregular. The method can reflect the real damage zone and is accord with the fatigue mechanism. The damage zone size and the load applied show a quadratic curve relationship and monotone increase. This method considers the changing load’s effect on the damage zone and even large load is applied it still can accurately predict the fatigue life of components. In order to prove the universality of the method,two examples with different notch shapes and load forms were given to verify. The result shows that the method can accurately predict the fatigue life of components with any notch shape and any load form and good predicted results have been achieved

    Enhanced random testing for programs with high dimensional input domains

    Get PDF
    Random Testing (RT) is a fundamental technique of software testing. Adaptive Random Testing (ART) has recently been developed as an enhancement of RT that has better fault detection effectiveness. Several methods (algorithms) have been developed to implement ART. In most ART algorithms, however, the above enhancement diminishes when the dimensionality of the input domain increases. In this paper, we investigate the nature of failure regions in high dimensional input domains and propose enhanced random testing algorithms that improve the fault detection effectiveness of RT in high dimensional input domains

    Fusion of Multidimensional CNN and Handcrafted Features for Small-Sample Hyperspectral Image Classification

    No full text
    Hyperspectral image (HSI) classification has attracted widespread concern in recent years. However, due to the complexity of the HSI gathering environment, it is difficult to obtain a great number of HSI labeled samples. Therefore, how to effectively extract the spatial&ndash;spectral feature with small-scale training samples is the crucial point of HSI classification. In this paper, a novel fusion framework for small-sample HSI classification is proposed to fully combine the advantages of multidimensional CNN and handcrafted features. Firstly, a 3D fuzzy histogram of oriented gradients (3D-FHOG) descriptor is proposed to fully extract the handcrafted spatial&ndash;spectral feature of HSI pixels, which is suggested to be more robust by overcoming the local spatial&ndash;spectral feature uncertainty. Secondly, a multidimensional Siamese network (MDSN), which is updated by minimizing both contrastive loss and classification loss, is designed to effectively exploit the CNN-based spatial&ndash;spectral features from multiple dimensions. Finally, the proposed MDSN combined with 3D-FHOG is utilized for small-sample HSI classification to verify the effectiveness of our proposed fusion framework. The experimental results on three public data sets indicate that the proposed MDSN combined with 3D-FHOG is significantly better than the representative handcrafted feature-based and CNN-based methods, which in turn demonstrates the superiority of the proposed fusion framework

    Detection of Unresolved Targets for Wideband Monopulse Radar

    No full text
    Detecting unresolved targets is very important for radars in their target tracking phase. For wideband radars, the unresolved target detection algorithm should be fast and adaptive to different bandwidths. To meet the requirements, a detection algorithm for wideband monopulse radars is proposed, which can detect unresolved targets for each range profile sampling points. The algorithm introduces the Gaussian mixture model and uses a priori information to achieve high performance while keeping a low computational load, adaptive to different bandwidths. A comparison between the proposed algorithm and the latest unresolved target detection algorithm Joint Multiple Bin Processing Generalized Likelihood Ratio Test (JMBP GLRT) is carried out by simulation. On Rayleigh distributed echoes, the detection probability of the proposed algorithm is at most 0.5456 higher than the JMBP GLRT for different signal-to-noise ratios (SNRs), while the computation time of the proposed algorithm is no more than two 10,000ths of the JMBP GLRT computation time. On bimodal distributed echoes, the detection probability of the proposed algorithm is at most 0.7933 higher than the JMBP GLRT for different angular separations of two unresolved targets, while the computation time of the proposed algorithm is no more than one 10,000th of the JMBP GLRT computation time. To evaluate the performance of the proposed algorithm in a real wideband radar, an experiment on field test measured data was carried out, in which the proposed algorithm was compared with Blair GLRT. The results show that the proposed algorithm produces a higher detection probability and lower false alarm rate, and completes detections on a range profile within 0.22 ms

    Fusion of Multidimensional CNN and Handcrafted Features for Small-Sample Hyperspectral Image Classification

    No full text
    Hyperspectral image (HSI) classification has attracted widespread concern in recent years. However, due to the complexity of the HSI gathering environment, it is difficult to obtain a great number of HSI labeled samples. Therefore, how to effectively extract the spatial–spectral feature with small-scale training samples is the crucial point of HSI classification. In this paper, a novel fusion framework for small-sample HSI classification is proposed to fully combine the advantages of multidimensional CNN and handcrafted features. Firstly, a 3D fuzzy histogram of oriented gradients (3D-FHOG) descriptor is proposed to fully extract the handcrafted spatial–spectral feature of HSI pixels, which is suggested to be more robust by overcoming the local spatial–spectral feature uncertainty. Secondly, a multidimensional Siamese network (MDSN), which is updated by minimizing both contrastive loss and classification loss, is designed to effectively exploit the CNN-based spatial–spectral features from multiple dimensions. Finally, the proposed MDSN combined with 3D-FHOG is utilized for small-sample HSI classification to verify the effectiveness of our proposed fusion framework. The experimental results on three public data sets indicate that the proposed MDSN combined with 3D-FHOG is significantly better than the representative handcrafted feature-based and CNN-based methods, which in turn demonstrates the superiority of the proposed fusion framework
    • …
    corecore