Fusion of Multidimensional CNN and Handcrafted Features for Small-Sample Hyperspectral Image Classification

Abstract

Hyperspectral image (HSI) classification has attracted widespread concern in recent years. However, due to the complexity of the HSI gathering environment, it is difficult to obtain a great number of HSI labeled samples. Therefore, how to effectively extract the spatial–spectral feature with small-scale training samples is the crucial point of HSI classification. In this paper, a novel fusion framework for small-sample HSI classification is proposed to fully combine the advantages of multidimensional CNN and handcrafted features. Firstly, a 3D fuzzy histogram of oriented gradients (3D-FHOG) descriptor is proposed to fully extract the handcrafted spatial–spectral feature of HSI pixels, which is suggested to be more robust by overcoming the local spatial–spectral feature uncertainty. Secondly, a multidimensional Siamese network (MDSN), which is updated by minimizing both contrastive loss and classification loss, is designed to effectively exploit the CNN-based spatial–spectral features from multiple dimensions. Finally, the proposed MDSN combined with 3D-FHOG is utilized for small-sample HSI classification to verify the effectiveness of our proposed fusion framework. The experimental results on three public data sets indicate that the proposed MDSN combined with 3D-FHOG is significantly better than the representative handcrafted feature-based and CNN-based methods, which in turn demonstrates the superiority of the proposed fusion framework

    Similar works