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Abstract  
Random Testing (RT) is a fundamental technique of 

software testing. Adaptive Random Testing (ART) has 
recently been developed as an enhancement of RT that 
has better fault detection effectiveness. Several methods 
(algorithms) have been developed to implement ART. In 
most ART algorithms, however, the above enhancement 
diminishes when the dimensionality of the input domain 
increases. In this paper, we investigate the nature of 
failure regions in high dimensional input domains and 
propose enhanced random testing algorithms that 
improve the fault detection effectiveness of RT in high 
dimensional input domains.  
 
1. Introduction 

Effective test case selection strategies are essential to 
increase the chance of detecting failures and reduce the 
cost of software testing process. Random Testing (RT) is 
a simple test case selection strategy that treats the 
Software Under Test (SUT) as a black box [11]. In RT, 
test cases are selected randomly from the input domain 
(that is, the set of all possible inputs) of the SUT. Despite 
the criticism that RT may be ineffective as it does not 
make use of the information about the SUT [15] or 
previously executed test cases, RT has been a popular and 
successful testing method in many applications 
[8][9][10][12][13][14][16] as it is simple in concept and 
easy to implement.  

Previous studies have shown that failure-causing 
inputs tend to be clustered in certain ways [1][2][9]. 
Regions formed by the failure-causing inputs are referred 
to as failure regions [1]. Chan et al. [3] classified these 

failure regions into three typical patterns: point, strip and 
block failure patterns.  

Chen et al. [4] made use of the general information 
about the typical patterns of failure regions to improve 
the fault-detection effectiveness of RT. They found that 
when the failure-causing inputs cluster in a block or a 
reasonably thick strip area, the chance of detecting the 
first failure can be magnified by spreading the test cases 
widely and evenly across the input domain. This test case 
selection approach is known as Adaptive Random Testing 
(ART). ART can be implemented using the Fixed-Size-
Candidate-Set (FSCS) algorithm [4]. 

In a study of the fundamental factors that may affect 
the fault-detection effectiveness of FSCS-ART [7], it was 
found that the performance of FSCS-ART deteriorates 
when the dimensionality of the input domain (that is, the 
number of input parameters) increases. Since real-life 
applications may have many input parameters, it is 
essential to create new algorithms that can improve the 
fault-detection effectiveness of RT in high dimensional 
input domains. 

In this paper, we propose two enhanced RT algorithms 
for high dimensional input domains. These algorithms are 
designed based on our analysis on the locations of FSCS-
ART test cases and the failure regions in high 
dimensional input domains. In addition, the fault-
detection effectiveness of the proposed enhanced RT 
algorithms is evaluated through simulation experiments. 

The rest of this paper is organized as follows: the next 
section presents the notations and evaluates the fault-
detection effectiveness of FSCS-ART in high 
dimensional input domains. Section 3 analyzes the 
locations of FSCS-ART test cases and the failure regions 



  

in high dimensional input domains. Then Section 4 
proposes two enhanced RT algorithms and evaluates their 
fault-detection effectiveness against RT through 
simulation experiments. Section 5 concludes the paper. 
 
2. Background 

In this section, we present the preliminaries of RT and 
ART performance evaluation and the problems associated 
with FSCS-ART algorithm in high dimensional input 
domains.  

 
2.1 Preliminaries  

Assume that a SUT has a set of n input parameters {x1, 
x2 ,…, xn}, where xi (i=1, 2, …, n) has a bounded range 

ii dx ≤<0 (the situation where vixu ≤<  and u ≠ 0 can 

be mapped to uvix −≤<0  as this mapping does not 

change the shape of the input domain). For an n-
dimensional bounded input domain D, the size of the 

input domain is defined as |D|= ∏
=

n

i
id

1

. With a failure 

region of size m, the failure rate Ө of the SUT is then 
defined as Ө=m/|D|.  

F-measure [6] has been used to evaluate the 
performance of ART (in this paper, the term “fault-
detection effectiveness” and “performance” are used 
interchangeably). F-measure is defined as the number of 
test cases required to detect the first failure.  Let FART and 
FRT denote the F-measure of ART and RT, 
respectively.  Since ART is an enhanced version of RT, 
the ART F-Ratio (= FART / FRT ) was introduced to serve 
as the comparison metric to show how much 
improvement ART has over RT. Obviously, the smaller 
the ART F-Ratio is, the better the performance of ART 
will be.  

For RT with uniform usage profile and replacement 
[6], the theoretical FRT mean is 1/Ө. The FART can be 
obtained via empirical study. To obtain a statistically 
significant FART mean, all simulations were repeated until 
the FART mean has an accuracy range of 5% and a 
confidence level of 95%. For further details, please refer 
to [4]. 

ART is known to have the best performance in the 
block failure pattern [7]. In this paper, we will confine 
both empirical and analytical studies to a single block 
failure region with equal size for each of its dimensions. 

 
2.2 Performance of FSCS-ART in high 
dimensional input domains  

Figure 1 shows the performance of FCSC-ART when it 
is applied in 1(1D), 3(3D), 6(6D) and 9(9D) dimensional 
input domains for Ө ranging from 0.75 to 0.0005. For 
ease of presentation, Ө is plotted on a log0.5 scale.  
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Figure 1: The ART F-ratios of FSCS-ART for input 
domains of different dimensionalities.  

 
The experiment results in Figure 1 show that the 

existing FSCS-ART does not perform well when the 
failure rate is large or the number of dimensions of SUT 
is large. This observation was explained as a consequence 
of the "edge bias" of FSCS-ART in [7]. As the number of 
dimensions of the input domain increases, the 
performance of FSCS-ART deteriorates more 
significantly. Therefore, it is necessary to further 
investigate the “edge bias” problem and its impact on the 
performance of FSCS-ART. 
 
3. Why the Performance of FSCS-ART 
Deteriorates in High Dimensional Input 
Domains? 

To investigate the above problem, we examine the test 
case distribution of FSCS-ART and analyze the location 
of the failure region in the input domains. 

 
3.1 Test case distribution of FSCS-ART 

Based on the definitions in Section 2.1, we additionally 
define a centre region and an edge region within an n-
dimensional input domain as follow. 

The centre region, Dc, is a sub-region of input domain 
D which shares the same centre with the input domain 
(denoted by O). The size of the centre region Dc is 50% 
of the size of input domain D (that is, |Dc| =0.5×|D|). The 
width for each dimension of the centre region, cdi, is 
given by cdi = n 5.0 di. The edge region, De, is defined as 
the non-centre region in the input domain. The size of the 
edge region is equal to the centre region (that is, |De| = 
|Dc| =0.5×|D|). The “width” for each dimension of the 
edge region, edi, is defined as edi = ( ) 25.01 i

n d− .  
Having introduced the concepts of the centre and edge 

regions, we would like to compare the numbers of test 
cases distributed over these two regions. Let edgeCount 
be the number of test cases located in the edge region, 
and centreCount be the number of test cases located in 



  

the centre region. Let RE,C be the ratio of edgeCount to 
centreCount. In our experiment, whenever FSCS-ART 
generates a test case, we will check its location and 
update the corresponding centreCount or an edgeCount 
accordingly. As the two regions are equal in size, an RE,C 
greater than 1 implies more test cases are being selected 
from the edge region. We conducted experiments to 
observe the values of RE,C produced by FSCS-ART for 
input domains with different dimensionalities when the 
number of test cases changed from 1 to 10,000. The 
results are shown in Figure 2. 

From Figure 2, we can observe that, firstly, RE,C is 
almost always greater than 1, which means that FSCS-
ART selects more test cases from the edge region than 
from the centre region. Secondly, RE,C becomes larger as 
the number of dimensions of the input domain increases. 
Intuitively, this is because the higher the dimensionality, 
the more corners/edges the input domain has, which will 
be filled up first by the test cases generated by the FSCS-
ART algorithm. Thirdly, RE,C increases to a peak and then 
fluctuates prior to decreasing gradually towards limit 1. 

Before we further analyze the impact of such “edge 
biased” test case distribution on the performance of 
FSCS-ART, we would like to examine the location of the 
failure region in the input domain. 
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Figure 2: The ratio RE,C produced by FSCS-ART 
when the number of test cases ranged from 1 to 10,000 
 
3.2 The location of the failure region in the 
input domain 

When the number of dimensions of the input domain 
increases, the width of the centre region will increase, and 
in turn the width of the edge region will decrease.  This 
observation brings up an important question: for a 
specific failure rate, as the edge width becomes narrower 
in high dimensional input domains, would the failure-
causing inputs (points in a randomly located block failure 
region) have an equal chance of falling into the centre 
region and the edge region?  

Let the n-dimensional input domain be homogeneous 
and have a unit size, that is, |D|=1 and di=1 (i = 1, 2, …, 
n). The size of a failure region F is given by |F|= Ө×|D|. 
Assuming that the failure region has the same orientation 
as the input domain and let the failure region be a block 
with equal width for each of its dimensions. Each 
dimension of the failure region is denoted by fi (i = 1, 2, 
…, n), with the width n

i Df θ= . Figure 4 shows how 

|fi| varies against the number of dimensions for the failure 
rates Ө=0.005 and Ө=0.0005.  

Figure 3 shows that, for the same failure rate Ө, when 
the number of dimensions of the input domain increases, 
|fi| will also increase but the width of the edge region, edi, 
will decrease. When Ө=0.0005, |fi| will become greater 
than edi for input domains of 4 dimensions and above; for 
a higher failure rate, say Ө=0.005, this will happen more 
quickly. When |fi| > edi, it means that even in the situation 
where the failure region is attached to a border of the 
input domain, part of the failure region will still fall into 
the centre region. Therefore, the probability distribution 
for the location of failure region within the input domain 
warrants further analysis. 
Referring to Figure 4, consider how fi of different sizes 
can be located fully or partially within the centre region 
and edge region of dimension i. Let Pcentre,i denote the 
probability that some or all the elements of fi fall into the 
centre region of dimension i. Similarly, the probability 
that some or all elements of fi fall into the edge region of 
dimension i is denoted by Pedge,i. Equations (1) and (2) 
define Pcentre,i and Pedge,i respectively. 
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For an n-dimensional input domain, the probability 
that some or all elements of the failure region are located 
in the centre region is denoted as Pcentre. On the other 
hand, the probability that some or all elements of the 
failure region are located in the edge region is denoted as 
Pedge. Assuming that the input domain is homogeneous 
(that is, d1=d2=…dn), Pcentre and Pedge can be simplified 
into Equations (3) and (4), respectively. 

)3(
1

,∏
=

=
n

i
icentrecentre PP  

( ) ( ) )4(,,
1

1

1
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Figure 5 plots the ratio Pcentre/Pedge against the failure 
rates, Ө, from 0.75 to 0.0005. When Pcentre/Pedge > 1, it 
indicates that elements of failure region have a higher 
probability to occupy the centre region than the edge 
region. As mentioned earlier, when the dimensionality of 
the input domain increases, RE,C becomes higher, which 
indicates that FSCS-ART will select more and more test 
cases from the edge region than from the centre region. 
However, at the same time, the ratio Pcentre/Pedge also 
becomes higher, which means that the failure region has 
higher probability to occupy the centre region than the 
edge region when the dimensionality of the input domain 
increases. As a result, FSCS-ART becomes less effective 
in high dimensional input domain.  
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failure region in different dimensionalities 
 

 
Figure 4: fi of different sizes compared to the centre 
and edge widths. 
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Figure 5: Pcentre / Pedge for input domain of different 
dimensionalities 
 
4. Enhanced RT Algorithms for High 
Dimensional Input Domains  

The above analysis gives us an inspiration that if we 
select more test cases from the region where failure-
causing inputs are more likely to fall into, then we will 
achieve better fault-detection effectiveness. In this section, 
we propose two methods (algorithms) to improve the 
fault detection effectiveness of RT in high dimensional 
input domains and report their performance through 
simulation experiments. 
 
4.1 Inverted FSCS-ART  

Since FSCS-ART selects more test cases from the edge 
region than from the centre region in high dimensional 
input domains, a simple approach to improve the fault 
detection effectiveness is to invert the edge/centre 
distribution of FSCS-ART test cases. This can be done by 
mapping the FSCS-ART test cases from the edge to the 
centre region and vice versa before executing them. We 
name this method Inverted FSCS-ART. This algorithm is 
outlined in Figure 6. Note that the core of the FSCS-ART 
test case selection algorithm remains unchanged. 
Equation (5) is one of the linear functions that can map 
the FSCS-ART test cases from the edge to the centre 
region and vice versa. Note that xi is one of the input 
parameters (that is, one of the dimensions) in the input 
domain and ii dx ≤<0 . 

⎩
⎨
⎧

−
+

=
2
2

)(
ii

ii
i dx

dx
xf      

iii

ii

dxd
dx
≤<

≤<
2

20
           (5) 

To evaluate the performance of Inverted FSCS-ART, 
simulations were conducted for failure rates, Ө, ranging 
from 0.75 to 0.0005 for n-dimensional input domains 
where n = 1, 3, 6 and 9. The simulation results in Figure 7 
show that Inverted FSCS-ART outperforms RT for all 
failure rates and dimensionalities of input domains under 
the study. The performance of Inverted FSCS-ART in 1D 
input domain is very similar to that of FSCS-ART. 



  

However, for 3D input domain, it can be observed that 
the FIART/FRT ratio falls to a minimum before settling at 
0.7. Similar trend can be observed for 6D and 9D input 
domains where the FIART/FRT minimums occur at smaller 
failure rates, Ө (that is, higher values on log0.5Ө scale). 
This observation concurs with the higher Pcentre/Pedge and 
RE,C ratios in higher dimensional input domains. As the 
failure region has increasing chances of occupying the 
centre region in high dimensional input domains, 
inverting the edge-biased FSCS-ART test case 
distribution will increase the chance of detecting the 
failures region.  

 

 
Figure 6: Inverted FSCS-ART algorithm 
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Figure 7: The ratio of the F-measure mean of Inverted 
FSCS-ART to the F-measure mean of RT. 
 
4.2 Proportional Random Testing 

The Pcentre/Pedge ratio provides a useful guideline for 
the number of test cases that should be selected in the 
centre and in the edge region. Ideally, 1/(RE,C) should be 
in proportion to, and, as close as possible to the 
Pcentre/Pedge ratio. Unfortunately, failure rate is unknown 
during testing. Therefore, it is impossible to determine the 

Pcentre/Pedge ratio. However, the failure rate can be 
projected dynamically based on the number of test cases 
that have been executed. By taking the theoretical F-
measure mean of random testing, after j test cases have 
been executed, the failure rate can be projected as 
Өprojected=1/(j+1), assuming that next test case will detect 
the first failure. The ratio Pcentre/Pedge can then be 
estimated based on Өprojected. 

We propose the following algorithm in Figure 8 to 
select test cases randomly in the centre and in the edge 
region in proportion to the ratio Pcentre/Pedge. We name this 
algorithm as “Proportional Random Testing” (PRT). 

 

 
Figure 8: Proportional Random Testing algorithm 
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Figure 9: The ratio of the F-measure mean of 
Proportional Random Testing (PRT) to the F-measure 
mean of RT.  
 

To evaluate the performance of the Proportional 
Random Testing, simulations were conducted for failure 
rates, Ө, ranging from 0.75 to 0.0005 for n-dimensional 
input domains where n = 1, 3, 6 and 9. The simulation 

1. Initialize j to 0, edgeCount to 1, centreCount to 1, and 
selectTestCaseInCentre to true, where j is the number of 
test cases executed. 

2. If selectTestCaseInCentre is true, randomly select and 
execute a test case in the centre region. Otherwise, 
randomly select and execute a test case in the edge 
region. 

3. Increment j by 1. If selectTestCaseInCentre is true, 
increment centreCount by 1. Otherwise, increment 
edgeCount by 1. Update RE,C. 

4. If a failure is detected, testing is stopped and debugging 
may start. Otherwise go to step 5. 

5. Update the projected failure rate as Өprojected=1/(j+1). 
6. Calculate the ratio Pcentre/Pedge based on Өprojected. 
7. If 1/(RE,C) < Pcentre/Pedge, set 

selectTestCaseInCentre=true. Otherwise, set 
selectTestCaseInCentre=false. 

8. If testing resources are not exhausted, go to step 2. 

1. Initialize E as an empty set. 
2. Randomly choose a test case t. Add t to E. 
3. Test the SUT using test case t. 
4. If a failure is detected, testing is stopped and debugging 

may start. Otherwise go to step 5. 
5. Randomly generate k candidates from the input domain to 

form a candidate set C, where k is a constant integer 
greater than 0. The value of k was set to 10 in our 
experiments. 

6. Find Cc ∈ such that, among all the elements in C, c has 
the longest distance to its nearest neighbor in E. 

7. Add c to E. 
8. Map c to c’ using Equation (5). 
9. Test the SUT using test case c’. 
10. If testing resources are not exhausted, go to step 4. 



  

results in Figure 9 show that Proportional Random 
Testing outperforms RT significantly when the number of 
dimensions is high (that is, when the Pcentre/Pedge ratio is 
sufficiently large). As the dimensionality of the input 
domain increases, it can be observed that FPRT/FRT 
approaches 1 at smaller failure rates, Ө (that is, higher 
values on log0.5Ө scale). However, this algorithm is only 
as good as RT when the number of dimensions is low 
(that is, when Pcentre/Pedge ≈ 1). 
 
5. Conclusion  

In this paper, we proposed two enhanced RT 
algorithms for high dimensional input domains based on 
our analysis on two fundamental reasons that cause the 
performance of FSCS-ART to deteriorate in high 
dimensional input domains.  

Proportional Random Testing is superior to Inverted 
FSCS-ART in computational cost for test case generation 
because Inverted FSCS-ART inherits the high 
computational cost in test case selection from FSCS-ART 
[5]. However, Proportional Random Testing does not 
give significant improvement over RT when the number 
of dimensions is low. Therefore, Proportional Random 
Testing should be used to generate test cases only when 
the number of dimension is high (that is, more than 3). 
On the other hand, Inverted FSCS-ART does not suffer 
from this setback. It can be used as a generic algorithm to 
generate test cases for programs with an input domain of 
any dimensionality. 

For future work, we intend to evaluate the 
performance of the proposed algorithms for other patterns 
of failure regions in high dimensional input domains.  
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