72 research outputs found

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Intra-Urban Levels, Spatial Variability, Possible Sources and Health Risks of PM2.5 Bound Phthalate Esters in Xi'an

    Get PDF
    Phthalate esters (PAEs) are abundant semi-volatile organic compounds in fine particulate. PM2.5 bound PAEs can inhale into the body with breath, which can cause negative effects to human health. In this study, total of 266 PM2.5 samples dispersed from nineteen communities in Xi'an, were collected at December, 2013, the heavy pollution periods. Most of them are from residential areas, and four of them are in universities. Much high levels of PAEs were obtained in this study, which were from 271.7 to 2134 ng m(-3) (952.6 ng m(-3) on average). DEHP was the dominant species, with an average of 402.4 ng m(-3), and attributed for 42.2% of the total PAEs, followed by BBZP (146.8 ng m(-3) on average) and accounted for 15.4% of the total PAEs. Relative humidity and ventilation coefficient are the two meteorological factors affect the PAEs pollutions during the sampling periods. PAEs showed a declined trend from the urban to suburban. The principal component analysis (PCA) investigated that the release from plasticizer using in vinyl flooring, inks, synthetic leather, adhesives, and food contact wrapping; and emissions from cosmetics and personal care products, varnish, and volatilization from solid waste landfill or sewage sludge from wastewater treatment plant are the main sources for PAEs (86.8% of total PAEs). The daily inhalation and cancer risk assessment displayed that possible risk for all age group persons in this area, and infants are the most susceptible population

    Coexistence of two dune growth mechanisms in a landscape-scale experiment

    Full text link
    In landscape-scale experiments at the edge of the Gobi desert, we show that various dune types develop simultaneously under natural wind conditions. Using 4 years of high-resolution topographic data, we demonstrate that, depending on sand availability, the same wind regime can lead to two different dune orientations, which reflect two independent dune growth mechanisms. As periodic oblique dunes emerge from a sand bed and develop to 2 meters in height, we analyze defect dynamics that drive the non-linear phase of pattern coarsening. Starting from conical sand heaps deposited on gravels, we observe the transition from dome to barchan and asymmetric barchan shapes. We identify a minimum size for arm elongation and evaluate the contribution of wind reversals to its longitudinal alignment. These experimental field observations support existing theoretical models of dune dynamics boosting confidence in their applicability for quantitative predictions of dune evolution under various wind regimes and bed conditions

    Characterization of Geographical and Meteorological Parameters

    Get PDF
    [EN]This chapter is devoted to the introduction of some geographical and meteorological information involved in the numerical modeling of wind fields and solar radiation. First, a brief description of the topographical data given by a Digital Elevation Model and Land Cover databases is provided. In particular, the Information System of Land Cover of Spain (SIOSE) is considered. The study is focused on the roughness length and the displacement height parameters that appear in the logarithmic wind profile, as well as in the albedo related to solar radiation computation. An extended literature review and characterization of both parameters are reported. Next, the concept of atmospheric stability is introduced from the Monin–Obukhov similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable Boundary Layers (SBL). The latter considers the effect of the free-flow static stability and baroclinicity on the turbulent transport of momentum and of the Convective Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well as the model of turbulent entrainment

    Morphometry of lunette dunes in the Tirari Desert, South Australia

    No full text
    Morphometry and formation processes are key research problems in the study of aeolian sandy landforms. Based on morphometric parameters inferred from satellite images and the calculation of the drift potential (DP), we examined general characteristics of lunette dunes in the Tirari Desert, South Australia, along with their morphometry and formation processes to determine how this landform type initially formed and its relationship to surrounding linear dune distribution. Results show that the morphometric parameters of lunette dunes and connective lake systems exhibit moderate correlations. It suggests that the morphology of these dunes is controlled by the lakes. Spatially, the lunette dunes present regular arrangement, and the strike of their alignment are approximately in accordance with the linear dunes. The calculated DP implies that the lunette dunes developed under a low-wind-energy environment, which is a wind regime similar to that required for the formation of the surrounding linear dunes. Even though, the resultant DP demonstrates that the summer wind should be responsible for the growth of the lunette dunes. However, accompanied with the repeated drying of lakes and even its disappearance during the dune development process, it not only contributes to the development of lunette dunes but also promotes their transformation to linear dunes

    tgcd: An R package for analyzing thermoluminescence glow curves

    Get PDF
    Thermoluminescence (TL) glow curves are widely used in dosimetric studies. Many commercial and free-distributed programs are used to deconvolute TL glow curves. This study introduces an open-source R package tgcd to conduct TL glow curve analysis, such as kinetic parameter estimation, glow peak simulation, and peak shape analysis. TL glow curves can be deconvoluted according to the general-order empirical expression or the semi-analytical expression derived from the one trap-one recombination center (OTOR) model based on the Lambert W function by using a modified Levenberg–Marquardt algorithm from which any of the parameters can be constrained or fixed. The package provides an interactive environment to initialize parameters and offers an automated “trial-and-error” protocol to obtain optimal fit results. First-order, second-order, and general-order glow peaks (curves) are simulated according to a number of simple kinetic models. The package was developed using a combination of Fortran and R programming languages to improve efficiency and flexibility. Keywords: TL glow curve, Deconvolution, Simulation, R packag

    The Combined Effect of Sediment Availability and Wind Regime on the Morphology of Aeolian Sand Dunes

    No full text
    International audienceAeolian-driven sand dune orientation is a key parameter that determines dune morphology. Although wind regime, surface condition, and sediment availability all control sand dune formation, researchers have mostly put emphasis on the wind regime. However, research shows that the formation of dune orientation cannot be explained solely on wind because different dune types can form under the same wind regime in a given area. In this study, we investigate the combined effects of wind regime and sediment availability on dune orientation based on numerical simulations. The model clarifies the extent to which sediment availability influences dune orientation as well as the physical mechanisms that allow for the coexistence of different dune types. We found that linear dunes and barchans can coexist when the sediment availability is less than 10% with a localized sand source, and where barchans are situated at the extremity or on the same flank of the linear dunes. When the angle between two dominant winds is greater than 90° and sediment availability is greater than 10%, oblique dunes may occur, and they can evolve from asymmetric barchans. This study offers insight into the potential relationship between dune-forming factors related to the wind regime and the available erodible sediment within a dune system, in view of the fact that such a model would be a valuable tool in ascertaining the causes behind complex dune formation processes
    • 

    corecore