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Abstract This chapter is devoted to the introduction of some geographical and me-
teorological information involved in the numerical modeling of wind fields and solar
radiation. Firstly, a brief description of the topographical data given by a Digital Ele-
vation Model and Land Cover databases are provided. In particular, the Information
System of Land Cover of Spain (SIOSE) is considered. The study is focused in the
roughness length and the displacement height parameters that appear in the loga-
rithmic wind profile, as well as in the albedo related to solar radiation computation.
An extended literature review and characterization of both parameters are reported.
Next, the concept of atmospheric stability is introduced from the Monin-Obukhov
similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable
Boundary Layers (SBL). The latter considers the effect of the free-flow static stabil-
ity and baroclinicity on the turbulent transport of momentum and of the Convective
Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well
as the model of turbulent entrainment.

2.1 Geographical data

The main geographical information for wind and solar radiation modeling may be
classified into two general databases, the topographical data related to the orography
of the region to be studied and the land cover databases containing the information
of the land uses. In this section, both are introduced.
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2.1.1 Topographical information

To study the orography of a surface, it is usual to start from a Digital Elevation
Model (DEM) that contains elevation data on a uniform grid (height map). For
example, the National Geographic Institute of Spain provides a 25m ×25m grid
with a precision of 5m in height for all the national territory (MDT25). In Spain,
the geodetic Cartesian reference frame used is the European Terrestrial Reference
System 1989 (ETRS89) in the Peninsula, Balearic Islands, Ceuta and Melilla, and
REGCAN95 in the Canary Islands (both systems are compatible with WGS84).
UTM projection in the corresponding time zone is also applied, with an extended
time zone 30 for sheets of time zones 29 and 31. This DEM was obtained by inter-
polation from land cover data obtained with LIDAR of the National Plan of Aerial
Orthophotography (PNOA), except for the sheets of Ceuta, Melilla and Alborn Is-
land (1110, 1111, 1078B). They were constructed by automatic stereo-correlation
of photogrammetric flies (PNOA) with resolution from 25 to 50 cm/pixel, revised
and interpolated with break lines where it was viable.

2.1.2 Land cover databases

The characterization of both the aerodynamic roughness length (z0) and the dis-
placement height (d) is critical when modeling the wind field using the log vertical
profile. It is known that the values of these parameters depend on weather conditions
and land coverage. Thus, many authors have studied its relationship, providing typ-
ical values for each land cover. In this chapter, we have performed a comprehensive
literature review to collect the intervals of z0 and d values for each land coverage
[60]. In particular, we have focused on the coverages present in the “Information
System of Land Cover of Spain” (SIOSE).

There are many geometrical factors and atmospheric conditions than can influ-
ence the aerodynamic parameters of surfaces and, hence, the vertical wind profiles
found above (see, e.g. [54] showing the influence of z0 in wind speed). Therefore,
it is essential to know of the roughness length and the displacement height to de-
fine the wind state in numerous applications, such as the wind field, air quality and
forest fire spread modeling. The values of z0 and d are generally related to the veg-
etation and topographical characteristics so that they are affected by the land cover-
age variations; for example, the change of season (especially in vegetation cover),
construction or demolition of buildings, etc. In addition, for each coverage, z0 and
d estimations may vary according to the wind speed and direction, and the atmo-
spheric stability; see, e.g., [7]. Under this assumption, maps of z0 and d are built
for each weather conditions. As a rule of thumb, we can compute their values as a
function of the height of the surface morphology characteristics (h). For instance,
for a crop or forest canopy [10] proposes a value of d between 0.67h and 0.75h,
and a value of z0 about 0.12h. However, these approximations cannot be applied if
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the surface is not homogeneous. In such cases, a more detailed analysis of the land
coverage is required [47, 48].

For this reason, during the last five decades, many authors have proposed pa-
rameterizations for several land coverages. In these first approaches, the character-
istics of the surface elements were used to estimate the roughness parameters for
the various canopies. For example, with regard to crop canopies, [42] estimated z0
according to h and d for harvested wheat; [93] obtained z0 and d as a function of h
for olives orchards; and [41] parameterized z0 from wind measures using the wind
profile. In forests, [100] estimated z0 and d according to the tree crown and struc-
ture, while [63] obtained them from wind observations and canopy structure. On
the other hand, [20] performed a parameterization from measures in a desert with
artificial vegetation, whereas [99] did it from wind speed, temperature and turbulent
flow measures in bare soils. Moreover, in urban terrains, [30] compared several for-
mulae of these parameters, and [56] carried out a parameterization of z0 and d in
a heterogeneous surface that was validated using a wind tunnel and empirical data.
In wetlands, [61] obtained z0 and d from the minimization of a least square differ-
ence function based on the log wind profile equation for near-neutral stability; in wet
grasslands and reed-beds, [1] estimated z0 from eddy correlation measurements; and
[78] used specific parameterizations for a Siberian bog. For water surfaces, some ap-
proaches were gathered, such as the estimation of z0 for the sea that was validated
in the laboratory by [39]; the comparison of two parameterizations for oceans by
[22]; and the parameterization of z0 for the sea by [25]. Finally, some authors have
also parameterized z0 and d for general land coverage: [92] proposed changes in
Raupach parameterization using a list of values from the literature; [29] compared
three previous methods and proposed to use the median; and, in the model of the
European Wind Atlas [90], a parameterization of z0 and d was introduced in four
classes of coverages.

Some other authors estimated z0 and d values according to canopy form. For ex-
ample, [8] used catastral databases, whereas [14] applied a characterization of build-
ings in urban terrains. In particular, [84] estimated d in Tokyo considering buildings
of different heights. Most of these methods require costly field works. However,
the methodology proposed here avoids measuring problems related to the evalua-
tion of roughness parameters. In other approaches, the wind profile is directly used
to estimate z0 and d from wind measurements at different heights over a homoge-
neous surface from within the inertial sublayer. In their work, [52] estimated z0 and
d for cotton, orchards and desert covers from wind measures using the wind pro-
file; [36] obtained z0 and d from measures of different instruments; [5] calculated z0
and d from wind measures and wind profile with radar in desert; [73] and [68] used
anemometer measures at different heights for cliff coverage; [11] estimated z0 and
d from field measures in peatlands; [83] obtained z0 and d from friction velocity
(u?) measures using the wind profile; [13] used different measure equipment and
compared results with other authors in desert; [67] presented a regression of data
obtained with radio-wind probes in forest; [45] obtained d from simultaneous scin-
tillation measurements at two heights. Both parameters can be estimated by solving
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the non-linear wind profile equations: see, e.g., [26] for seas and land, and [18] for
forest canopy.

Some applications of particular models and their database have been consid-
ered in this study. In [82], z0 and d were estimated with several numerical models
and measured data for cotton, scrub and grass canopies; [57] used a computational
fluid dynamics (CFD) simulation and the land cover database of the National Land
Agency of Japan; [38] performed a simulation with COAMPS W-UCM for several
episodes in New York; [44] used the model COSMO to parameterize z0 in urban
terrains; [91] applied the LGN3 database in Rotterdam; [55] compared results of z0
and d from the National Land Cover Database (NLCD) for the Conterminous United
States [24] with field measures in floodplain surfaces; and [97] presented a project
for evaluating the annual wind energy production with a CFD code, a digital land
model and three land cover databases. Relevant summaries extracted from several
sources may be found in [34], where an extended review of many estimations of z0
and d is provided, and in [28], where a useful list of parameter values is presented.

Special attention is paid to studies involving the use of remote sensing. On the
one hand, the use of aircraft Lidar surveys was presented in [31] where z0 was
obtained for roads; in [37], describing a totally automated approach to the generation
of z0 values from Lidar terrain data; in [88], using a combination of low and high
density airborne Lidar and satellite SPOT-5 HRG data, in conjunction with ground
measurements of forest structure, to parameterize four models for d and z0 over
cool-temperate forests in an inland river basin; and also in [15] for an application
in an inland river basin. On the other hand, in the last twenty-five years, several
projects on land cover mapping have been developed mainly using satellite images.
They characterize both parameters for each surface type. For example, the LGN7
model that uses several databases in The Netherlands with NSD (National Satellite
Data) and aerial photos [35]; the LGN3 land cover database of The Netherlands that
combines satellite and ancillary data [98]; the NLCD [24]; the CORINE land cover
database [6]; and the SIOSE land cover database of Spain [64] that has been used in
this work.

In general, most of the previous methods estimate fixed values of z0 and d of
particular land coverages. The final aim of constructing roughness parameter maps
is to improve the mesoscale predictions using a downscaling model; allowing to
obtain a more accurate estimation of the wind power that may be generated in a
region.

2.1.3 SIOSE land cover database

In 1990, the first land cover database encompassing the whole national territory was
constructed in Spain on a scale of 1 : 100.000. It was developed in the framework
of the CORINE Land Cover (CLC) European project. In the year 2000, there was
a need to update the database to homogenize and improve its utility for developing
territorial analysis and European policies. The resulting database is known as Im-
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age & CORINE Land Cover 2000. This update led to a new land cover database
for the entire European continent. Other CLC updates have been produced in 2006
and 2012. In short, it consists of an inventory of land cover in 44 classes. The CLC
uses a Minimum Mapping Unit (MMU) of 25 hectares (ha) for areal phenomena
and a minimum width of 100 m for linear phenomena. The time series are comple-
mented by change layers, which highlight changes in land cover with an MMU of
5 ha. The CLC is produced by the majority of countries, by visual interpretation of
high-resolution satellite imagery. In a few countries, semi-automatic solutions are
applied, using national in-situ data, satellite image processing, GIS integration and
generalization. In comparison with the NLCD of the United States of America, the
CLC has the advantage that it contains vectorized polygon data instead of the raster
data of the NLCD. Also, some layers of the CLC, like fruit trees or olive groves, are
missing in the NLCD. However, the NLCD brings some better aspects like up-to-
date data, a very high resolution of 30 m/pixel and an available companion dataset
with canopy density.

The project SIOSE (Spanish acronym for Information System of Land Cover of
Spain) was created in 2005 by the National Reference Center on Land Cover and
on Land Use and Spatial Planning to integrate the local information available from
the Autonomous Communities and the General State Administration. It uses the
geodetic Cartesian reference frame ETRS89 with UTM Projection on time zones
28, 29, 30 and 31, and INSPIRE Directive. Since the requirements at the Spanish
national level were higher than those supplied by the European project, the SIOSE
generated a new land cover database for all the country on a 1 : 25.000 scale. It was
based on reference images from 2005, with a MUM of 0.5 to 2 ha (SIOSE 2005)
and a planimetric accuracy of 5 m or better. The project was updated in 2009 and
2011; see [64]. Other important differences with the CLC are the land classification
and the hierarchy levels, which are much more simplified in the CLC than in the
SIOSE.

The SIOSE inventory is based on reference information, satellite SPOT5 im-
agery, as geometrical and time reference, and orthophotographs of the National
Aerial Orthophotography Plan (PNOA). It uses the cadastre; the Integrated Water
Information System (SIA); the Geographical Information System of Agricultural
Parcel (SIGPAC); the database of boundary lines between Autonomous Communi-
ties from the Central Register of Cartography of the National Geographic Institute;
orthophotographs and satellite imagery; databases and thematic maps related to the
land cover; the Spanish Forest Map (MFE); and the Map of Crops and Utiliza-
tion (MCA) provided by the Autonomous Communities, previously approved by
the Project National Direction.

The SIOSE database consists of different basic and compound coverages. A com-
pound coverage is made up of a combination of basic or compound coverages.
Specifically, it considers eight general groups of basic coverages (Crops, Grass-
land, Forest, Scrubs, No Vegetation, Artificial Coverage, Wet Coverage and Water
Coverage) that are further refined into forty specific classes of basic land coverage;
see. e.g., [65]. Therefore, at any point of the terrain, the land cover is defined as
a weighted average of these forty basic coverages. The spatial unit is the polygon.
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Each polygon must contain a basic or compound coverage. The coverages that rep-
resent at least 5% of the polygon surface should be considered. In practice, each
point of the DEM grid is labeled with the types of SIOSE polygon where it belongs.
Figure 4.2 shows the polygons of the land cover classes in Gran Canaria (6,983)
and La Palma (2,470).

(a) Gran Canaria (b) La Palma

Fig. 2.1: SIOSE land cover polygons for the Islands of Gran Canaria and La Palma,
respectively.

2.1.4 Roughness length and displacement height: literature review

The search spaces of z0 and d must be defined to obtain the appropriate values of
them. Here, we present a methodology to generate a table with the ranges of z0 and d
values for each land coverage. Particularly, the methodology is applied to Gran Ca-
naria and La Palma Islands, but it is suitable to any other location. To find the ranges
of possible z0 and d values for each land cover, we have carried out a literature re-
view. Table 2.1 summarizes it and the specific references are listed in the caption.
The first and second columns show the SIOSE code and a description for each of the
distinct land coverages. The third and fourth, and the fifth and sixth columns present
the nominal value and the range of the parameter z0 and d, respectively. When data
are not available, we have used the rule of thumb to obtain the z0 and d values from
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the canopy height h; see [10]. Also, it is worth remarking that d is assumed to be
zero for water surfaces (ACU, AEM, AES, ALC, ALG, AMO and LAA classes).

Table 2.1 considers both general and local characteristics of the land coverage.
On the one hand, for the most common coverage types in Gran Canaria, we have
used the largest interval from those proposed by a wide list of authors. On the other
hand, due to the particular characteristics of some land coverages in Gran Canaria,
we have used a more specific study in some cases. For instance, the works of [73]
and [24] have been employed to characterize sea cliffs. The former study proposes
a value of d = 3.3m for a cliff of 40m. Using this same ratio, the value for the
Andén Verde (690m) and the Risco de Faneque (1027m) cliffs are 57m and 85m,
respectively. These values have been taken as lower bound (3.3m), nominal value
(57m) and upper bound (85m). Another specific land coverage of Gran Canaria
is the LOC class (Other Woody Crops). In Gran Canaria, it refers to Aloe Vera
plantations. In this case, [58] studied the typical canopy height ranges for the Aloe
Vera. Using these ranges and the rule of thumb, we have obtained the z0 and d ranges
and nominal values.

We have searched in the literature the minimum and the maximum values of each
parameter and canopy. In addition, the values more used by different authors have
been selected as nominal values, but these are not used in our approach. In fact, we
used the ranges of Table 2.1 as searching space for the solution of each parameter in
each characteristic wind situations. Then, we performed an extended literature re-
view on the assigned values of the roughness parameters of each coverage. For this
reason, in general, we think that the proposed ranges completely cover the variation
interval of z0 and d corresponding to each coverage, respectively, not only for the re-
gion studied in this paper but also for any region if the specific coverage is included
in that literature review. Nevertheless, some ranges have been defined according to
the local characteristics of certain coverages. This is the case of the high sea cliffs in
Gran Canaria, for example, where the range of z0 and d have been adapted to such
heights. Another case is Other Woody Crops related to Aloe Vera plantations on the
island. For the latter, we have used the standard morphological characteristics. So,
in general, these are the only particular cases to review for the application of ranges
given in Table 2.1 to any other region.

The bibliography of Table 2.1 may be classified according to the procedure used
to obtain z0 and d. Several authors proposed parameterizations of the roughness
parameters from measures of the wind and other physical magnitudes. This is the
case of [10] which is used here in many coverages; [90] in water surfaces; [51] in
screes; [79] in screes, conifers, and citrus fruit trees; [86, 87] in conifers; [46] in rice
crops; [30] in low buildings; [93] in olive groves; [40] in vineyards; [74] in water
surfaces; and [32] in artificial coverages.

Some other works are based on the canopy morphology, such as [12] used in
water and saline coverages; [53] in deciduous forests, wetlands and scrubs; and [58]
in Aloe Vera crops. Another extended approach is the use of measurements and wind
profile: [73] used in cliffs; [13] in screes; [5] in Quaternary lava flow; [18, 36, 67] in
conifers; [83] in rice crops; [41] in crops different from rice; [70] in no citrus fruit
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Table 2.1: Nominal values and ranges of z0 and d for the land cover classes provided by SIOSE. The superindex indicates the source:
(a) [24], (b) [73], (c) [3], (d) [90], (e) [6], ( f ) [10], (g) [12], (h) [4], (i) [75], ( j) [98], (k) [101], (l) [51], (m) [13], (n) [79], (o) [5], (p) [18], (q) [36], (r) [67],
(s) [86, 87], (t) [83], (u) [46], (v) [16], (w) [41], (x) [23], (y) [74], (z) [89], (α) [30], (β ) [53], (γ) [28], (δ ) [21], (ε) [17], (ζ ) [57], (η) [9], (θ) [43], (ι) [59],
(κ) [70], (λ ) [58], (µ) [93], (ν) [72], (ξ ) [40], (σ) [95], (τ) [26], (φ) [32], (χ) [82], (ψ) [81], (ω) [96].

Code Land Cover z0z0z0 (m) z0minz0minz0min–z0maxz0maxz0max ddd (m) dmindmindmin–dmaxdmaxdmax

ACM Sea Cliffs 0.05(a) 0.05(b)–0.19(b) 57(b) 3.3(b)–85(b)

ACU Water Courses 0.00025(c) 0.0001(d)–0.01(e) 0( f ,y) –
AEM Water body. Reservoirs 0.00025(d) 0.0001(d)–0.005(g) 0( f ,y) –
AES Estuaries 0.0002(h) 0.0001(d)–0.01(e) 0( f ,y) –
ALC Coastal Lagoons 0.005(g) 0.0001(d)–0.01(e) 0( f ,y) –
ALG Water body. Lakes and Lagoons 0.0005(i) 0.0001(d)–0.005(g) 0( f ,y) –
AMO Seas and Oceans 0.0002(h) 0.0001(d)–0.03(a) 0( f ,y) –
ARR Rocky Outcrops and Rocks 0.005(e) 0.0003( j)–0.18(k) 0.03( f ) 0( f )–0.96( f )

CCH Screes 0.1(a) 0.05(l)–0.15(m) 0.6(n) 0.56(n)–0.66(n)

CLC Quaternary lava flow 0.0286(o) 0.0013(o)–0.0735(o) 0.15( f ) 0( f )–0.4( f )

CNF Forest. Conifers 1.28(p) 0.25(q)–1.93(r) 13.1(s) 4.87(r)–22(n)

CHA Herbaceous crops. Rice 0.072(t) 0.001(u)–0.11(t) 0.85(t) 0.1(t)–1.55(t)

CHL Herbaceous crops. Different from Rice 0.1(v) 0.004(w)–0.74(x) 0.25(w) 0.1(w)–3(ι)

EDF Artificial Coverage. Buildings 1.5(z) 0.7(z)–3.7(x) 14(z) 7(z)–19.73( f )

FDC Forest. Leafy. Deciduous 1(β ) 0.18(β )–1.4(a) 11.8(γ) 3(γ)–21.6(γ)

FDP Forest. Leafy. Evergreen 0.72(k) 0.6(c)–2.65(δ ) 9.7(γ) 3(γ)–31(z)

GNP No Vegetation. Glaciers and Perpetual Snow 0.001(e) 0.00001(ε)–0.012(z) 0.01( f ) 0( f )–0.06( f )

HMA Salt Marshes 0.11(k) 0.0002( j)–0.17( j) 0.6( f ) 0( f )–0.93( f )

HPA Wetlands 0.1(e) 0.005(β )–0.55(k) 0.55( f ) 0.03( f )–3( f )

HSA Salt Mines 0.01(e) 0.0005(e)–0.04(g) 0.05( f ) 0( f )–0.22( f )

HSM Salt Lakes 0.01(e) 0.0005(e)–0.04(g) 0.05( f ) 0( f )–0.22( f )
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Table 2.1: Continued

Code Land Cover z0 (m)z0 (m)z0 (m) z0minz0minz0min–z0maxz0maxz0max d (m)d (m)d (m) dmindmindmin–dmaxdmaxdmax

HTU Peat bogs 0.03(e) 0.0005(e)–0.03(e) 0.16( f ) 0( f )–0.16( f )

LAA Artificial Coverage. Artificial water body 0.0001(e) 0.0001(e)–0.005(g) 0(e,y) –
LFC Woody Crops. Citrus Fruit Trees 0.31(η) 0.03(d)–0.4(θ) 3(n) 0(ι)–4(ι)

LFN Woody Crops. No Citrus Fruit Trees 0.25(e) 0.03(d)–1(ζ ) 0.92(κ) 0(ι)–4(ι)

LOC Other Woody Crops 0.0615(λ , f ) 0.0369(λ , f )–0.0861(λ , f ) 0.33(λ , f ) 0.2(λ , f )–0.47(λ , f )

LOL Olive Groves 0.48(µ) 0.25(e)–0.61(µ) 2.67(µ) 2(µ)–3(µ)

LVI Vineyards 0.2(ν) 0.08(ξ )–0.55(ν) 0.75(ν) 0.31(ξ )–1.4(σ)

MTR Scrubs 0.16(β ) 0.016(β )–1(a) 4.8(τ) 0.9(z)–7.1(τ)

OCT Artificial Coverage. Other Buildings 0.5(e) 0.06(k)–1(e) 4(α) 2(α)–14(z)

PDA No Vegetation. Beaches, Dunes and Sandy Areas 0.0003(e) 0.0003(e)–0.06( j) 0( f ) 0( f )–0.33( f )

PRD Crops. Meadows 0.03(e) 0.001(ε)–0.1(e) 0.013(z) 0.007(ι)–0.035(z)

PST Grasslands 0.09(ε) 0.001(ε)–0.15(ε) 0.171(χ) 0.013(z)–0.66(ι)

RMB No Vegetation. Ravines 0.0012(ψ) 0.0003(d)–0.005(ω) 0.03(h, f ) 0( f )–0.03( f )

SDN No Vegetation. Bare Soil 0.001( j) 0.0002(ω)–0.04(k) 0.03(h, f ) 0( f )–0.22( f )

SNE Artificial Coverage. Unbuilt Land 0.0003( j) 0.0002(ω)–0.04(a) 0( f ) 0( f )–0.22( f )

VAP Artificial Coverage. Road, Parking or Unvegetated Pedestrian Areas 0.03(e) 0.0035(ψ)–0.5(e) 1(y,φ) 0.02(φ)–2.5(φ)

ZAU Artificial Coverage. Artificial Green Area and Urban Trees 0.4(d) 0.03( j)–1.3(x) 3.5(y,φ) 3.5(z)–14(z)

ZEV Artificial Coverage. Extraction or Waste Areas 0.1(e) 0.0003( j)–0.18(k) 0.16(ω, f ) 0( f )–1( f )

ZQM No Vegetation. Burnt Areas 0.6(e) 0.1(e)–1.1( j) 3.27( f ) 0.54( f )–6( f )



50 G. Montero, E. Rodrı́guez and A. Oliver

trees; [72, 95] in vineyards; [26] in scrubs; and [96] in soils without vegetation and
artificial coverages.

Also in Table 2.1, there are some values of z0 and d arising from applications of
specific numerical models with their land cover databases. For example, [75] used
them in lakes and lagoons; [101] in rocky outcrops and rocks, evergreen forests,
salt marshes, wetlands, bare soils, and artificial coverages; [21] in evergreen forests;
[57] used in no citrus fruit trees; [82] in grasslands; and [81] in ravine and road,
parking or unvegetated pedestrian areas.

Some papers dealing with collections of data from other authors, in particular
from old publications, were useful too. In particular, the one by [4] used in estuar-
ies, seas and oceans, and soils without vegetation; [23] in crops different from rice
and artificial coverage; [89] in buildings, evergreen forests, glaciers and perpetual
snow, scrubs, meadows, grasslands and artificial green area and urban trees; [28]
in deciduous and evergreen forests; and [59] in crops different from rice, woody
crops, meadows and grasslands. Also some early publications were used for con-
structing Table 2.1, such as [16], used in crops different from rice; [17] in glaciers
and perpetual snow, meadows and grasslands; and [9, 43] in citrus fruit trees.

Finally, some of the current land cover databases based on remote sensing sur-
veys (specifically, aircraft lidar and satellite images) that were taken into account
are [24]: the NLCD database used in cliffs; [3]: the 1-km land cover data set DIS-
COVER (IGBP-DIS) for water courses; [6]: the CLC database applied in many cov-
erages; and [98]: the LGN3 database used in rocky outcrops and rocks, salt marshes,
soils without vegetation, and artificial coverages.

2.1.5 Roughness length and displacement height characterization

The SIOSE project uses a vectorial format, but, for convenience, we will translate it
to a raster format. For this, we will define a grid with np points and, for each point,
we will look for the mean value of basic coverages. Once we have the values of z0
and d for each basic coverage, we can compute the specific z0 and d values at any
point using an appropriate weighted mean. This way, the SIOSE database will let us
create a matrix with the percentage of the basic coverages at any point. This matrix
is defined as follows: let M be an np×nb matrix, with components mi, j, where nb is
the number of basic coverages. For each row i of M, mi, j is the fraction of the basic
coverage j at the point ni (mi, j < 1 and ∑

nb
j=1 mi, j = 1).

When the ranges of z0 and d are set for each basic land coverage, we can com-
pute its values at any point of the terrain. Assuming that the values of z0 and d are
a certain mean of the values of the basic coverages z0 j and d j, j = 1, . . . ,nb, we can
compute their values at any point. A simple weighted average may produce differ-
ences with the effective roughness of one order of magnitude. The study by [76]
for the effective roughness length improves the formula proposed by [85], taking
into account a non-dimensional patchiness parameter to consider the textural infor-
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mation about the spatial dependence of the primitives (regions with specific prop-
erties) characterizing the surface inhomogeneity. However, generally the coverage
information provided by the land cover databases (e.g., SIOSE) does not include
the spatial distribution of basic coverages in a composed one, but only the fraction
of the area covered by each surface type. So, in this case, only Taylor’s formula
was applied; in this approach, for a coverage i composed by nb basic canopies with
roughness length z0 j; j = 1, . . . ,nb on a fraction mi j of the area, respectively, an ap-
proximation to the effective roughness length is given by computing the weighted
geometric mean roughness length z0:

z0 =
nb

∏
j=1

z
mi j
0 j . (2.1)

Regarding the displacement height, d, [76] and [85] did not study its estimation.
In any case, the above mean formula is not appropriate for d, since, in the case
of a basic coverage with displacement height equal to zero, it would produce a
mean z0 = 0 independently of the z0 j values of the other basic coverages. Some
other works have studied the variation of d in several specific coverages, e.g., in
urban [56] and vegetation [62, 100] canopies. One important conclusion is that the
effective displacement height of a heterogeneous coverage can exceed the surface
mean canopy height significantly. Taking this into account, we propose to use a
weighted root mean square to obtain the highest mean value:

d =

√√√√ nb

∑
j=1

mi jd2
j , (2.2)

where d j and mi j are the displacement height and the fraction of the basic coverage
j in the composed one i, respectively. Figures 2.2(a) and (b) show the resulting
composed z0 and d values in Gran Canaria and La Palma Islands, considering the
nominal values of the basic coverages given in Table 2.1. We remark that a weighted
average version of that proposed by [69],

d = exp

[
nb

∑
j=1

mi j

lnd j

]−1

, (2.3)

which must be evaluated in the limit if any d j = 0 or d j = 1, is not appropriate in
the case of any d j = 1 since the average result of d would always be equal to 1,
independently of the other d j values. Similar conclusions may be reached from its
application in the calculation of z0 if any z0 j = 1. It can be noted that the application
of this methodology to another database is straightforward.
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(a) Roughness length map of Gran Canaria (b) Roughness length map of La Palma

(c) Displacement height map of Gran Canaria (d) Displacement height map of La Palma

Fig. 2.2: Roughness length and displacement height maps of Gran Canaria and La
Palma islands (m) corresponding to the nominal values stated in Table 2.1 and using
the mean values given in (2.1) and (2.2), respectively.

2.1.6 Literature review and characterization of albedo

The ranges of albedo ρ for each land cover have been obtained from a literature
review. Table 2.2 summarizes it, and the specific references are listed in the caption.
Here again, the first and second columns show the SIOSE code and a description for
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each land coverages. The third and fourth columns present the nominal value and
the range of ρ . Following the same procedure as for z0 and d, we have taken the
largest interval from those proposed by a wide list of authors.

Using the same nomenclature as in the roughness parameter characterization, we
propose to compute the effective albedo at any point of a SIOSE polygon with an
average of the mean values of the basic coverage albedo,

ρ =
nb

∑
j=1

mi jρ j, (2.4)

where ρ j and mi j are the albedo and the fraction of the basic coverage j in the
composed one i, respectively.

Table 2.2: Albedo nominal values and ranges for SIOSE land cover classes. The
superindex indicates the source:
(a) [2], (b) [50], (c) [80], (d) [66], (e) [33], ( f ) [94], (g) [19], (h) [49], (i) [27]

Code Land Cover ρρρ ρminρminρmin–ρmaxρmaxρmax

ACM Sea Cliffs 0.2(a) 0.05(b)–0.7(b)

ACU Water Courses 0.14(c) 0.03(d)–1(d)

AEM Water body. Reservoirs 0.14(c) 0.03(d)–1(d)

AES Estuaries 0.1(a) 0.03(d)–1(d)

ALC Coastal Lagoons 0.1(a) 0.03(d)–1(d)

ALG Water body. Lakes and Lagoons 0.14(c) 0.03(d)–1(d)

AMO Seas and Oceans 0.1(a) 0.03(d)–1(e)

ARR Rocky Outcrops and Rocks 0.2(a) 0.1(b)–0.4(b)

CCH Screes 0.2(a) 0.05(b)–0.7(b)

CLC Quaternary lava flow 0.1(e) 0.05( f )–0.15( f )

CNF Forest. Conifers 0.14(e) 0.05(d)–0.15(d)

CHA Herbaceous crops. Rice 0.12(e) 0.18(d)–0.25(d)

CHL Herbaceous crops. Different from Rice 0.2(a) 0.18(d)–0.25(d)

EDF Artificial Coverage. Buildings 0.18(a) 0.18(a)–0.35(a)

FDC Forest. Leafy. Deciduous 0.16(a) 0.10(e)–0.5(a)

FDP Forest. Leafy. Evergreen 0.12(a) 0.09(c)–0.35(a)

GNP No Vegetation. Glaciers and Perpetual Snow 0.6(a) 0.2(d)–0.95(d)

HMA Salt Marshes 0.14(c) 0.14(a)–0.3(a)

HPA Wetlands 0.14(c) 0.14(a)–0.3(a)

HSA Salt Mines 0.5(g) 0.166(e)–0.5(g)

HSM Salt Lakes 0.5(g) 0.166(e)–0.5(g)

HTU Peat bogs 0.14(c) 0.14(a)–0.3(a)

LAA Artificial Coverage. Artificial water body 0.14(c) 0.03(d)–1(a)

LFC Woody Crops. Citrus Fruit Trees 0.18(a) 0.13(h)–0.22(h)

LFN Woody Crops. No Citrus Fruit Trees 0.18(a) 0.13(h)–0.22(h)

LOC Other Woody Crops 0.18(a) 0.13(h)–0.22(h)

LOL Olive Groves 0.18(a) 0.13(h)–0.22(h)
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Table 2.2: Continued

Code Land Cover ρρρ ρminρminρmin–ρmaxρmaxρmax

LVI Vineyards 0.18(a) 0.14(a)–0.5(a)

MTR Scrubs 0.25(a) 0.14(c)–0.5(a)

OCT Artificial Coverage. Other Buildings 0.16(a) 0.16(a)–0.45(a)

PDA No Vegetation. Beaches, Dunes and Sandy Areas 0.35( f ) 0.15( f )–0.45(g)

PRD Crops. Meadows 0.2(a) 0.1(e)–0.6(a)

PST Grasslands 0.18(a) 0.08(e)–0.6(a)

RMB No Vegetation. Ravines 0.16(c) 0.147(i)–0.173(i)

SDN No Vegetation. Bare Soil 0.16(c) 0.147(i)–0.173(i)

SNE Artificial Coverage. Unbuilt Land 0.18(a) 0.15(a)–0.6(a)

VAP Artificial Coverage. Road, Parking or Unvegetated Pedestrian Areas 0.18(a) 0.18(a)–0.35(a)

ZAU Artificial Coverage. Artificial Green Area and Urban Trees 0.15(c) 0.15(a)–0.6(a)

ZEV Artificial Coverage. Extraction or Waste Areas 0.13(a) 0.2(a)–0.6(a)

ZQM No Vegetation. Burnt Areas 0.097(i) 0.089(i)–0.098(i)

2.2 Meteorological parameters

The wind is produced, firstly, as a consequence of spatial differences of barometric
pressure, generally caused by the absorption of the solar radiation. In a horizontal
plane, the wind flows from high pressure zones to low pressure ones, while vertically
from low pressure zones to high pressure ones. Wind speed is proportional to the
pressure variation per unity of length or pressure gradient. Zones of same pressures
are represented in the weather maps joined by imaginary lines (isobars). The closer
the isobars are to each other, the stronger the wind is.

A second factor that affects the air movement is the Coriolis force, caused by
the Earth rotation. The term f = 2Θ senφl is called Coriolis parameter, where Θ =
7.292×10−5 s−1 is the Earth rotation velocity and φl is the latitude. It is considered
positive in the North Hemisphere, null in the Equator and negative in the South
Hemisphere.

Thirdly, a centripetal acceleration may appear when the wind turns around a cen-
tre. Finally, also the friction because of the air movement must be considered. Winds
affected by the pressure gradient and the Coriolis force are called geostrophic winds.

The Monin-Obukhov similarity theory leads to a division of the lowest layer of
the atmosphere into several sublayers where the vertical wind profile is constructed
in different ways. So, the planetary boundary layer is located at a height zpbl over
the terrain, and it is the layer under the free atmosphere that is directly affected by
the friction of the Earth surface. In this case zpbl is defined such that wind velocity
is considered to be constant over it [77],
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zpbl =
γ |v∗|

f
(2.5)

where γ is a constant between 0.15 and 0.45 that depends on the atmospheric stabil-
ity, and v∗ is the friction velocity that is computed from wind measures or predic-
tions.

The mixing layer, also called convective layer, is the atmospheric layer affected
by convective phenomena caused by the surface heat. The air is well-mixed, that is,
the wind and the potential temperature are almost constant with height. The height
of the mixing layer hm is approximated by:

hm = γ
′

√
|v∗|L

f
(2.6)

where usually γ ′ = 0.4 [102] and L is the Monin-Obukhov length, that is computed
with the Liu formulae [71],

1
L
= azb

0 (2.7)

where a and b are defined by the Pasquill Stability Class(see Table 2.4).
The surface layer, located at a height zsl over de terrain, is the lowest layer of

the planetary boundary layer, just joining the terrain surface layer, where the drag
friction force is dominant. The height of the surface layer is usually obtained [102],

zsl =
hm

10
(2.8)

The atmospheric stability is related to the atmospheric turbulence as well as with
the temperature gradient and the thermal inversion. It provides a qualitative measure
of the air density variations because of pressure and temperature changes, and other
phenomena that affect certain atmospheric movements.

The stability of the atmosphere may be classified as:

• Stable atmosphere. If a mass of air goes up, it will be surrounded by hotter air
and thus, less dense than it. This will make go down. If It goes down, It will be
surrounded by colder air (denser) and will tend to go up. This air trend of staying
in the same layer is called stability of the atmospheric stratification.

• Unstable atmosphere. Under unstable conditions, the potential temperature de-
creases with height, increasing the vertical movements, that is, if the air goes up,
it will be surrounded by colder and denser air and it will tend to continue go-
ing up; and if it goes down, it will find hotter and lighter air, and it will tend to
continue going down.

• Neutral atmosphere. If a mass of air (after a vertical movement in an atmo-
spheric layer without mixing with the surrounding air) experiments a null verti-
cal net force, the ascending movements will not be affected by the thermal gra-
dient and the atmosphere layer is assumed to be neutrally stratified. Under such
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conditions, this mass of air does not tend to regret to it original position (stable
atmosphere) nor accelerates going away from it (unstable stratification).

The atmospheric stability was usually characterized by the Table 2.3 including
the Pasquill stability classes.

Table 2.3: Pasquill stability classes depending on surface wind speeds and isolation.
Strong isolation corresponds to the typical sunny noon of the middle summer in
England; light isolation, to similar conditions in middle winter. Night is referred to
the period between one hour before sunset and one hour after sunrise. Neutral class
D should also be used for overcast skies during the day or the night, and for any sky
condition during the preceding and following night hours defined above.

Pasquill stability class
Isolation Night

Surface wind Strong Moderate Light Overcast
speed (m/s) ≥ 4/8≥ 4/8≥ 4/8 clouds ≤ 3/8≤ 3/8≤ 3/8 clouds

< 2 A A-B B - -
2−3 A-B B C E F
3−5 B B-C C D E
5−6 C C-D D D D
> 6 C D D D D

For A-B, take the average of A and B values, etc.

Table 2.4: Values of the parameters a and b to calculate Monin-Obukhov length
depending on the Pasquill stability class.

Pasquill stability class a b
A (Extremely unstable) -0.08750 -0.1029
B (Moderately unstable) -0.03849 -0.1714
C (Lightly unstable) -0.00807 -0.3049
D (Neutral) 0.00000 0.0000
E (Lightly stable) 0.00807 -0.3049
F (Moderately stable) 0.03849 -0.1714

Usually, the anemometers provide measures of turbulence intensity that may help
to complete the information about the type of atmospheric stability of the region.
The turbulence intensity i is defined as the squared root of the sum of the variances,
σ2

u , σ2
v , σ2

w, of the three components of the wind velocity u0, v0, w0, respectively,
divided by the average of the measure wind speeds,

i =

√
σ2

u +σ2
v +σ2

w

|v0|
(2.9)
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In practice, we only have measures of intensity variations of the speed but not of the
direction. In such cases, equation (2.9) yields:

i =
σv0

|v0|
(2.10)

where σv0 represents the standard deviation of the measured wind intensities.
An unstable atmosphere means a high level of turbulence, with a range of turbu-

lence intensities between 0.2 and 0.4, approximately. However, a stable atmosphere,
with a small turbulence or an almost null one, is characterized by intensities between
0.05 and 0.01. Table 2.5 illustrate the relation of the turbulence intensity and the at-
mospheric stability.

Table 2.5: Pasquill stability classes depending on the surface wind speed and the
turbulence intensity.

Pasquill stability class
Surface wind Isolation Night
speed (m/s) i> 0.35 0.35≥ i> 0.25 0.25≥ i> 0.15 0.15≥ i i> 0.075 0.075≥ i> 0.03 0.03≥ i

|v0|< 2 A B B B F F F
2≤ |v0|< 3 A B C C E E F
3≤ |v0|< 5 B B C C D E E
|v0| ≥ 5 C C C D D D D

The concepts of Neutral and Stable Boundary Layers (SBL) have been revised
to consider the effect of the free-flow static stability and baroclinicity on the turbu-
lent transport of momentum and scalars in the boundary layer, as well as the model
of turbulent entrainment for Convective Boundary Layers (CBL) [104]. Accord-
ingly, different types of SBL regimes can be distinguished: truly neutral (absence of
any buoyancy effects throughout the PBL); conditionally neutral (buoyancy flux at
the surface is negligible); short-lived nocturnal (separated from the free atmosphere
by near-neutral residual layers); and long-lived (immediately adjoining the stably
stratified free atmosphere). The SBL height, h, may be evaluated according to the
expression recently introduced by [103]. This expression represents a multi-limit
equation for the equilibrium PBL height that covers the types mentioned earlier of
neutral and stable conditions in the atmosphere. In contrast to the stable and neu-
tral cases, the estimation of the CBL height is not straightforward, since our model
is diagnostic and the recommended parameterizations are prognostic. To overcome
this problem, some prognostic data must be used. In this approach, the CBL height
is obtained from the results of the mesoscale model, e.g., HARMONIE-AROME
model.

The estimation of the PBL height is calculated separately for stable/neutral con-
ditions and convective conditions. For this, the Brunt-Väisälä frequency N in the
PBL and the surface buoyancy flux Bs allow to characterize atmospheric stability:
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N2 =
g
T

(
∂T
∂ z

+Γd

)
, (2.11)

g being the gravity acceleration, T a reference value of the air absolute temperature,
z the height variable and Γd = 9.8×10−3 K/m the dry adiabatic lapse rate If N2 ≥ 0,
the atmosphere is considered stable/neutral. However, N2 < 0 indicates a CBL.

In stable/neutral atmosphere (SBL), the formula to compute the SBL height was
proposed by [103]:

h = γ u∗/ f , (2.12)

where u∗ is the surface friction velocity, f the Coriolis parameter defined as f =
2ω sinφ (ω is the Earth rotation and φ the latitude), and γ is a function of the
imposed-stability parameter µN = N2h−h/ f in the free atmosphere:

γ = γ0

(
1+

γ2
0CuN

C2
s

µN

)−1/2

, (2.13)

Experimental data suggest γ0 = 0.5, CuN/C2
s = 0.6; N2h−h is the free-flow Brunt-

Väisälä frequency in the free atmosphere immediately above the SBL (h< z< 2h).
In particular, the stable/neutral PBL may be classified as: truly neutral (TN) at µN =
0 (Bs and N2h−h = 0); conditionally neutral (CN) usually at 0.5×102 < µN < 3×102

(Bs ≥ 0 and N2h−h > 0); nocturnal stable (NS) at (Bs < 0 and N2h−h = 0); and long-
lived stable (LS) at (Bs < 0 and N2h−h > 0).

2.3 Conclusions

Some essential data and parameter definitions for wind and solar radiation modeling
have been introduced in this chapter. From the geographical point of view, one must
have information about the orography of the surface involved in the simulation and
the land cover distribution of such surface. On the one hand, nowadays, DEM allows
to construct meshes adapted to a terrain surface to be used in the discretization of
a problem. On the other hand, the study of the roughness parameters associated to
an accurate knowledge of the land coverages provides a valuable tool for a better
wind field description. In the same way, the setting up of each land coverage albedo
is important to obtain reliable values of reflection in solar radiation modeling.
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