99 research outputs found

    The Electric Current Effect on Electrochemical Deconsolidation of Spherical Fuel Elements

    Get PDF
    For High-Temperature Gas-Cooled Reactor in China, fuel particles are bonded into spherical fuel elements by a carbonaceous matrix. For the study of fuel failure mechanism from individual fuel particles, an electrochemical deconsolidation apparatus was developed in this study to separate the particles from the carbonaceous matrix by disintegrating the matrix into fine graphite powder. The deconsolidated graphite powder and free particles were characterized by elemental analysis, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and ceramography. The results showed that the morphology, size distribution, and element content of deconsolidated graphite matrix and free particles were notably affected by electric current intensity. The electrochemical deconsolidation mechanism of spherical fuel element was also discussed

    Study on the Comprehensive Properties and Microstructures of A3-3 Matrix Graphite Related to the High Temperature Purification Treatment

    Get PDF
    At the beginning, a comparative analysis was made on the oxidation corrosion rate and ash content of A3-3 matrix graphite (MG) pebbles lathed before and after high temperature purification (HTP) treatment. Their oxidation corrosion rate and ash contents were almost identical, which indicated that the HTP process was to purify the entire MG pebbles and not limited on the surfaces. Furthermore, the multiple mechanical and thermal properties of MG treated without and with the treatment of HTP at ~1900°C were compared and their microstructure features were characterized as well. As the crush strength, oxidation corrosion rate, and erosion rate of MG without HTP treatment did not satisfy the specifications, the comprehensive properties and purity of MG with HTP were improved in various degrees through the HTP process so that all performances met the requirements of the A3-3 MG. The improvement of crush strength and erosion rate of MG in the HTP process could be mainly attributed to the upgradation of ordered microstructure and corresponding increase of density. However, the enhancement of oxidation corrosion rate was due to the synergistic effects of microstructural optimization and reduction of impurity elements, especially the transition metal elements of MG in the HTP process

    Global analysis of the relationship between reconstructed solar induced chlorophyll fluorescence (SIF) and gross primary production (GPP)

    Get PDF
    Solar-induced chlorophyll fluorescence (SIF) is increasingly known as an effective proxy for plant photosynthesis, and therefore, has great potential in monitoring gross primary production (GPP). However, the relationship between SIF and GPP remains highly uncertain across space and time. Here, we analyzed the SIF (reconstructed, SIFc)–GPP relationships and their spatiotemporal variability, using GPP estimates from FLUXNET2015 and two spatiotemporally contiguous SIFc datasets (CSIF and GOSIF). The results showed that SIFc had significant positive correlations with GPP at the spatiotemporal scales investigated (p p p > 0.05). Therefore, we propose a two-slope scheme to differentiate ENF from non-ENF biome and synopsize spatiotemporal variability of the GPP/SIFc slope. The relative biases were 7.14% and 11.06% in the estimated cumulative GPP across all EC towers, respectively, for GOSIF and CSIF using a two-slope scheme. The significantly higher GPP/SIFc slopes of the ENF biome in the two-slope scheme are intriguing and deserve further study. In addition, there was still considerable dispersion in the comparisons of CSIF/GOSIF and GPP at both site and biome levels, calling for discriminatory analysis backed by higher spatial resolution to systematically address issues related to landscape heterogeneity and mismatch between SIFc pixel and the footprints of flux towers and their impacts on the SIF–GPP relationship

    Discriminant Analysis of Jiang-Flavor Baijiu of Different Grades by Gas Chromatography-Mass Spectrometry and Electronic Tongue

    Get PDF
    Gas chromatography-mass spectrometry (GC-MS) and electronic tongue were used to quantitatively determine the volatile compounds and taste indices of 21 Jiang-flavor baijiu samples of different grades. These samples were differentiated by chemometrics, and key differential compounds among grades were identified. Finally, a discriminant model was established by machine learning. The results showed that there were differences in the contents of volatile compounds in Jiang-flavor baijiu of three grades, indicating the feasibility of further discriminant analysis. The total content of flavor compounds in second-grade baijiu (4 908 mg/L) was significantly lower than that in premium-grade (6 583 mg/L) and first-grade baijiu (8 254 mg/L), while the proportion of several esters responsible for floral and fruity aromas in total esters showed a decreasing trend as the grade decreased. Partial least squares-discriminant analysis (PLS-DA) identified 16 key differential compounds represented by ethyl palmitate and acetic acid. The results of electronic tongue showed that the taste indexes of premium-grade baijiu were more consistent, with lower bitterness and astringency aftertaste. The taste indexes of second-grade baijiu showed significant intersample differences. Principal component analysis (PCA) showed clear discrimination of Jiang-flavor baijiu of different grades according to their taste indexes. The above results provide a basis for the establishment of Jiang-flavor baijiu quality system. Four discriminant models were established based on 25 differential compounds and taste indexes identified. The accuracy of all models was higher than 90%, and the support vector machine (SVM) model performed best, with an accuracy of 100%

    Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction

    Get PDF
    铂镍合金在氢析出(HER)、氧还原(ORR)等重要能量转化反应中具有优异催化性质,受到了人们广泛的关注。近日,谢兆雄教授课题组通过简单的溶剂热方法,首次合成出六方晶系的铂镍合金枝状纳米晶,其中每个枝杈结构由六个{11-20}高能晶面裸露的超薄纳米片组装而成。与面心立方晶系铂镍合金相比,亚稳态的六方晶系铂镍合金在HER反应中表现出更加优异的性质。当电流密度为10 mA·cm-2时,其过电位仅有65 mV,同时质量电流密度高达3.03 mA·µgPt-1 (-70 m V vs. RHE),是目前为止报道的HER催化剂中质量活性最高的,其突出的催化性能主要来源于晶相作用(同质异晶)及大的比表面积。该项工作为发展高催化性能的铂基合金纳米晶提供了新的研究思路。该研究是在谢兆雄教授和蒋亚琪副教授指导下,与傅钢教授共同合作完成。实验部分由博士生曹振明(第一作者)、陈巧丽、沈守宇、卢邦安,硕士生李慧齐以及博士后张嘉伟共同完成,理论计算部分由傅钢教授课题组完成。【Abstract】Crystal phase regulations may endow materials with enhanced or new functionalities. However, syntheses of noble metal-based allomorphic nanomaterials are extremely difficult, and only a few successful examples have been found. Herein, we report the discovery of hexagonal close-packed Pt–Ni alloy, despite the fact that Pt–Ni alloys are typically crystallized in face-centred cubic structures. The hexagonal close-packed Pt–Ni alloy nano-multipods are synthesized via a facile one-pot solvothermal route, where the branches of nano-multipods take the shape of excavated hexagonal prisms assembled by six nanosheets of 2.5nm thickness. The hexagonal close-packed Pt–Ni excavated nano-multipods exhibit superior catalytic property towards the hydrogen evolution reaction in alkaline electrolyte. The overpotential is only 65mV versus reversible hydrogen electrode at a current density of 10 mAcm-2 , and the mass current density reaches 3.03mA µgPt-1 at -70mV versus reversible hydrogen electrode, which outperforms currently reported catalysts to the best of our knowledge.This work was supported by the National Basic Research Program of China (Grant 2015CB932301), the National Natural Science Foundation of China (Grants 21333008, 21603178 and J1030415) and the Natural Science Foundation of Fujian Province of China (No. 2014J01058). 该研究工作得到科技部(批准号:2015CB932301)、国家自然科学基金委(批准号:21333008, 21603178 和 J1030415)和福建省自然科学基金委(No. 2014J01058)的大力资助与支持

    Identification of the ADPR binding pocket in the NUDT9 homology domain of TRPM2

    Get PDF
    Activation of the transient receptor potential melastatin 2 (TRPM2) channel occurs during the response to oxidative stress under physiological conditions as well as in pathological processes such as ischemia and diabetes. Accumulating evidence indicates that adenosine diphosphate ribose (ADPR) is the most important endogenous ligand of TRPM2. However, although it is known that ADPR binds to the NUDT9 homology (NUDT9-H) domain in the intracellular C-terminal region, the molecular mechanism underlying ADPR binding and activation of TRPM2 remains unknown. In this study, we generate a structural model of the NUDT9-H domain and identify the binding pocket for ADPR using induced docking and molecular dynamics simulation. We find a subset of 11 residues—H1346, T1347, T1349, L1379, G1389, S1391, E1409, D1431, R1433, L1484, and H1488—that are most likely to directly interact with ADPR. Results from mutagenesis and electrophysiology approaches support the predicted binding mechanism, indicating that ADPR binds tightly to the NUDT9-H domain, and suggest that the most significant interactions are the van der Waals forces with S1391 and L1484, polar solvation interaction with E1409, and electronic interactions (including π–π interactions) with H1346, T1347, Y1349, D1431, and H1488. These findings not only clarify the roles of a range of newly identified residues involved in ADPR binding in the TRPM2 channel, but also reveal the binding pocket for ADPR in the NUDT9-H domain, which should facilitate structure-based drug design for the TRPM2 channel

    PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27–33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1–3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2

    State-of-the-Art of Recycling E‑Wastes by Vacuum Metallurgy Separation

    No full text
    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented
    corecore