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For High-Temperature Gas-Cooled Reactor in China, fuel particles are bonded into spherical fuel elements by a carbonaceous
matrix. For the study of fuel failure mechanism from individual fuel particles, an electrochemical deconsolidation apparatus was
developed in this study to separate the particles from the carbonaceousmatrix by disintegrating thematrix into fine graphite powder.
The deconsolidated graphite powder and free particles were characterized by elemental analysis, X-ray photoelectron spectroscopy
(XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and ceramography.
The results showed that themorphology, size distribution, and element content of deconsolidated graphite matrix and free particles
were notably affected by electric current intensity. The electrochemical deconsolidation mechanism of spherical fuel element was
also discussed.

1. Introduction

The fuel elements of High-Temperature Gas-Cooled Reactor
(HTR) are spherical and have an overall diameter of 60mm.
A 5mm thick unfueled matrix graphite shell comprises the
outer portion of the sphere. The central, fueled region of
the fuel element is 50mm in diameter and is composed of
0.92mm diameter tristructural isotropic- (TRISO-) coated
fuel particles that are overcoated and pressed into a 50mm
diameter sphere [1]. The graphite matrix covered more than
95% weight of the fuel element. To study the irradiation
behaviors of the spent fuel element, coated particles need
to be separated and sampled from the matrix graphite from
the inside out for further inspections of fission products
distribution [2]. Therefore, the structural integrity of coated
particles and the complete separation of coated particles from
matrix graphite are two key issues for exact measurements.
Intact coated particles consisting of silicon carbide (SiC)
and outer/inner pyrolytic carbon (PyC) layers should be
maintained, with graphite matrix and overcoating layers
removed [3, 4]. Most practical methods of disintegration
of HTR fuel elements studied in the past made use of the

fact that graphite forms so-called intercalation compounds
with certain elements, accompanied by enlargement of the
C-spacing of graphite lattice [5–7]. In this process graphite
matrix is loosened to such an extent that it disintegrates into
fine graphite powder to liberate the coated particles.

Electrochemical deconsolidation method is based on
anodic oxidation of graphite in electrolytes including strong
acids [8–10] and salt solution [11, 12]. Under the concentration
gradient and electrostatic potential gradient, anions would
transport towards anodic graphite matrix, with insertion into
the graphite layer to form the well-known graphite inter-
calation compounds. Since the compounds are not stable,
they could decompose naturally in the presence of water,
resulting in the destruction of the graphite matrix [13, 14].
If the deconsolidation is conducted in strong acid, carbon
oxidization caused by dissociated acid cations would also
lead to the destruction of the graphite matrix. During the
deconsolidation, the electric current is considered as one of
main factors that affect the deconsolidation procedure. In
this study, the electric current effect on the electrochemical
deconsolidation of spherical fuel elements was investigated in
HNO

3
electrolyte. Unirradiated spherical graphite balls with
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Figure 1: The electrochemical deconsolidation process.

ZrO
2
kernels produced by the similar processing of UO

2
fuel

elements were used as the test samples in this work.

2. Experimental

The apparatus in this work contains electrolyzing cell, rotator
(1), anode (2), Pt cathode (3), HNO

3
electrolyte (4), and DC

electrolytic power supply and control system (Figure 1). The
sample sphere is connected to a direct current source as well
as a gear motor using a motor rod linker. The motor rod
linker is only inserted about 4mm into the unfueled portion
of the sphere to avoid particle damage as a result of the decon-
solidation process. The deconsolidation process involves two
steps. In the first part of the deconsolidation process, the
sample sphere rotates (1 rpm) with the outer circumference
submerged in electrolyte solution, leaving a 2 cm-cylinder in
diameter at the end. In the second part of the process, the
remaining cylinder is rotated by 90∘ and lowered into the
electrolyte in discrete steps. The tested electric currents in
this work are 2A (2.4V), 7 A (6.4V), 10 A (8.5 V), and 13A
(10.7 V). Each step yields a sample of electrolyte solution,
graphite matrix, and associated coated particles after a series
of separationmethods.Thenunbonded particles are collected
and packaged separately, providing a profile of fuel from
the edge to the center of the sphere.

The deconsolidated powders were washed by SB-50 son-
icator (Xinzhi, China) and dried by DHG-9030A (Yiheng,
China). The samples were weighed by QUINTIX124-1CN
(Sartorius, German). The X-ray diffraction (XRD) spectra of
samples before and after deconsolidation were characterized
byD8X-ray diffractometer (Bruker, German); the X-ray pho-
toelectron spectrometry (XPS) properties of samples were
characterized by 250XI XPS instrument (Thermo, USA); the
element contents of the samples were measured by Various
ELIII element analysis instrument (Elementar, German); the
scanning electron microscope (SEM) images were measured
by S-3000N (Hitachi, Japan) equipped with energy dispersive
spectrometer (EDS). The particle size was measured by
Mastersizer 2000 laser particle size analyzer (Malvin, UK).

For elemental analysis, the deconsolidated samples were
firstly sonicated by high purified water to remove HNO

3
and

filtrated by vacuum for times until the filter liquor pH reached
above 6.0. Afterwards, the samples were dried at 120∘C in a
vacuum drying oven for 6 h to remove H

2
O with the weights

measured. Then the samples were dried at 120∘C for another
0.5 h and weighed. Once the weights differences before and
after drying were smaller than 0.2mg, H

2
Owas thought to be
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Figure 2: The electric current intensity effect on deconsolidation
rate. 𝑅2 = 0.96.

completely removed and the samples were sent for elemental
analysis.

3. Results and Discussion

3.1. The Electric Current Effect on Deconsolidation Rate. The
electric current effect on deconsolidation rate is shown in
Figure 2. The deconsolidation rate is defined as the mass of
disintegrated graphite fragments per hour. According to the
results, a positive influence of current on the disintegration
rate can be observed. It seems that a larger current leads to
a faster disintegration rate. However, if the current is further
increased to 20A, the disintegration rate will deviate from the
linear relationship (not shown in the figure), which might be
caused by competitive H

2
O electrolyzation.

3.2. The Components of Graphite Matrix before and
after Deconsolidation

3.2.1. Elemental Analysis. If collected after deconsolidation,
the graphite fragments gain an obvious weight of around
7–15%compared to those before deconsolidation. To examine
the component of samples, elemental analysis was carried out
for C, H, N, and O contents (Table 1). Based on the mass
balance, the difference between the overall mass and those of
C, H, and N can be ascribed to the mass of O. According to
the elemental analysis results, C is still the main component
of the fragments. The slight change of N content indicates
the formation of graphite-nitrate compounds, which are
probably intercalation compounds. The O increasing from
graphite matrix to deconsolidated samples indicates that
graphite matrix might be oxidized to some degree during the
chemical deconsolidation, which results in the weight gain.

3.2.2. XPS Results. Since elemental analysis result is a mean
value of the bulk of the sample, we further used XPS to char-
acterize the sample surface with extensive functionalization.
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Table 1: The elemental analysis results before and after deconsolidation.

Sample N% (mea.) C% (mea.) H% (mea.) O% (calc.) O/C
Graphite matrix 0.06 98.80 0.22 0.91 0.009
Deconsolidated by 2A (2.4V) 0.98 80.6 0.60 17.80 0.22
Deconsolidated by 7A (6.2 V) 1.14 78.68 0.88 19.31 0.25
Deconsolidated by 10A (8.5 V) 0.62 81.48 0.81 17.09 0.21
Deconsolidated by 13A (10.7 V) 0.75 80.91 0.79 17.55 0.22

Table 2: XPS fitting results.

Sample 284.6 eV 286.8 eV 289.0 eV O/C
Cont. C-C(H) C-O O-C=O
Graphite matrix >99.8% <0.1% <0.1% 0.04
Deconsolidated by 2A (2.4V) 65.3% 29.8% 4.8% 0.39
Deconsolidated by 7A (6.2 V) 73.2% 16.2% 10.5% 0.24
Deconsolidated by 10A (8.5 V) 45.6% 37.5% 16.9% 0.59
Deconsolidated by 13A (10.7 V) 60.9% 33.8% 5.2% 0.56
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Figure 3: XPS results before and after deconsolidation.

XPS spectra for graphite before and after deconsolidation
by different electric currents are shown in Figure 3. By
means of deconvolution, one spectrum can be fit to three
peaks at 284.6, 286.8, and 289.0 eV, separately [15], which can
be assigned to C-C(H), C-O, and O-C=O peaks (Table 2).
According to XPS results, the graphite crystal accounted for
more than 99.8% before electrochemical treatment, which
decreased from 65.3% to 45.6% if the current intensity
increased from 2A to 10A. It is noted that the graphite
proportion increased to 60.9% when the electric current
further increased to 13A, which is probably due to the
discounted oxidation effect with decreasing O/C ratio at too
rapid electrochemical rate (Table 2). Larger O/C calculated

from XPS results compared to those from elemental analysis
results implies thatmore abundant graphite oxidewas formed
on the surface of graphite debris after deconsolidation.

3.2.3. XRD Results. The XRD results (Figure 4) also provide
evidences about the formation of graphite oxide. The strong
single peak at 26.5∘ can be attributed to 002 diffraction peak of
graphite crystal [16], indicating a high graphitization degree
and an ordered arrangement of micrographite crystal layers.
During the deconsolidation, the formation of covalent bond
between oxygen and carbon atoms enhances the spacing
in graphite crystal along 𝑐-axial, and the peak at around
12∘ corresponds to the reflection of graphite oxides [17]. If
we calculate the graphitization, 𝐺 value, according to (1), a
declined graphitization can be observed for deconsolidated
samples compared to thematrix (Table 3). Since the deconsol-
idated samples are inhomogeneousmixture of various carbon
species, the graphitization is not dependent on current but
lies in the range of 0.80–0.89.

𝑑
002
=
𝜆

(2 sin 𝜃)

𝐺 =
(0.3440 − 𝑑

002
)

(0.3440 − 0.3354)

(1)

[18], where 𝜆 is wavelength of the X-rays, 𝑑
002

is distance
between 002 planes, and 𝜃 is the angle of incidence of the X-
ray beam.

3.3. The Current Intensity Effect on Particle Size of Graphite
Matrix after Deconsolidation. If we look further into the cur-
rent intensity effect on the particle size of graphitematrix after
deconsolidation (Figure 5), the following can be found: as the
current increased from 2A to 10A, the particle size decreased
from 365 nm to 148 nm, which was correspondent to the
previous study [7, 19]; as the current further increased to 13 A,
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Table 3: 2𝜃 and 𝐺 values of graphite powders produced by different deconsolidation currents intensities.

2𝜃 (∘) 𝐺

Graphite matrix 26.54 0.95
Deconsolidated by 2A (2.4V) 26.46 0.83
Deconsolidated by 7A (6.2 V) 26.48 0.86
Deconsolidated by 10A (8.5 V) 26.50 0.89
Deconsolidated by 13A (10.7 V) 26.44 0.80
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Figure 4: XRD results before and after deconsolidation.
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Figure 5:The current intensity effect on particle size after deconsol-
idation.

the particle size slightly increased to 240 nm. These results
indicate that when the electric current is relatively small,
larger deconsolidated particles are more likely to be formed
caused by more graphite oxidization inside the bulk. In this
case, the permeation rate of H

2
O is faster than electrolysis

rate, and the latter is a rate-control step. Inversely, when the
electric current becomes large enough, fine particles aremore
likely to be formed caused by more graphite oxidation on
the interface. On one hand, both electrolysis rates of graphite
matrix and H

2
O become larger as current increases; on the

other hand, the permeation rate of H
2
O into graphite matrix

would become smaller with increasing H
2
O electrolysis rate.

In this case, the permeation rate of H
2
O is slower than

electrolysis rate of graphite matrix, and the former becomes
the control step. Therefore, 10 A is a turning point where
the rate-control step changes from electrolysis rate-control to
permeation rate-control. According to these results, the elec-
tric current range from 7A to 13A would be recommended,
because the large difference in particle sizes between graphite
fragments and TRISO-particles benefits better separation of
deconsolidated graphite powders and TRISO-particles. How-
ever, the OPyC layer may be degraded or broken at higher
currents, which will be discussed in additional analysis in
Section 3.4.

The raw graphite matrix powder is composed of natural
graphite, synthetic graphite, and resin binder in a certain
proportion, which experience a series of high-temperature
treatment to form graphite matrix [20]. The binder phenol
resin is used to provide adhesion to mixture and helps to
adhere the graphite matrix powder to TRISO-coated fuel
particles during the overcoating process and will harden into
a carbonaceous carbon during the subsequent carbonization
process [21]. Compared to natural and synthetic graphite,
the structure of carbonaceous graphite is not so ordered,
so it is probably easier to be electrochemically oxidized.
Also, micropore structure will be formed on the surface
or in the bulk after manufacture processing due to powder
compression and volatilization of light components in binder.
According to SEM of the deconsolidated graphite sample
(Figure 6), the graphite matrix surface is relatively smooth
despite the porous structure, whereas the surface after decon-
solidation becomes rough, displaying the shape of graphite
raw materials. The electric current exerted little effect on
the microstructure of the graphite. Since graphite microcrys-
talline ismore orderedwith higher reaction activation energy,
it is reasonable to deduce that the carbonaceous carbon with
turbostratic structure is easier to be broken in electrochemi-
cal process. During the electrolysis, the nitric acid electrolyte
gradually infiltrated into the micropores of graphite matrix,
and the electrochemical reaction would take place around
micropore structure as well as on matrix surface. With much
higher surface reaction capability due to large specific area
of micropore structure, the expansion stress originated from
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Figure 6: SEM images before (a) and after (b) deconsolidation.

Figure 7: The ceramography of TRISO-particles deconsolidated by
7A (6.2 V).

inner surface of micropores widened the c-spacing of the
layer lattice of carbonaceous carbon, which was thought to
be one of the main driving forces of deconsolidation.

3.4. The Characterization of TRISO-Particles after Deconsoli-
dation. During the deconsolidation, it is critical to maintain
intact structure of obtained TRISO-particles for further
analysis. According to ceramography (Figure 7) and EDS
characterization of TRISO-particle surface after deconsoli-
dation (Figure S1, Supplementary Material available online
at https://doi.org/10.1155/2017/2126876), Si (1.740 eV) was
detected besides C (0.277 eV) and O (0.523 eV) if the samples
are treated by large electric current like 10A and 13A,
indicating that the outer PyC layer was broken and SiC
layer was exposed. Moreover, the detected Si peak at 13 A is
stronger than that at 10 A. Therefore, larger electric current
might increase the breakage risk of PyC layer. Combining the
above results for graphite fragments andTRISO-particles, the
current of 7 A (6.2 V) is preferred in this study.

4. Conclusions

In this work, the effect of different electric current intensities
on deconsolidation of spherical fuel element was studied. It

is shown that increased electric current improved deconsol-
idation rate. Particle size and components of deconsolidated
graphite fragments were also related to the current intensity.
According to the structure and surface analysis results,
graphite oxide was produced after the deconsolidation, the
content of which was also related to current intensities. The
expansion stress originated from inner surface of micropores
of carbonaceous carbon was thought to be one of the main
driving forces of deconsolidation. Considering that larger
electric current than 10A would cause the breakage of OPyC
layer and the exposure of SiC layer, the electric current of 7 A
is preferred in this study.
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