123 research outputs found

    A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate

    Get PDF
    Silicate weathering, which is of great importance in regulating the global carbon cycle, has been found to be affected by complicated factors, including climate, tectonics and vegetation. However, the exact transfer function between these factors and the silicate weathering rate is still unclear, leading to large model–data discrepancies in the CO2 consumption associated with silicate weathering. Here we propose a simple parameterization for the influence of vegetation cover on erosion rate to improve the model–data comparison based on a state-of-the-art silicate weathering model. We found out that the current weathering model tends to overestimate the silicate weathering fluxes in the tropical region, which can hardly be explained by either the uncertainties in climate and geomorphological conditions or the optimization of model parameters. We show that such an overestimation of the tropical weathering rate can be rectified significantly by parameterizing the shielding effect of vegetation cover on soil erosion using the leaf area index (LAI), the high values of which are coincident with the distribution of leached soils. We propose that the heavy vegetation in the tropical region likely slows down the erosion rate, much more so than thought before, by reducing extreme streamflow in response to precipitation. The silicate weathering model thus revised gives a smaller global weathering flux which is arguably more consistent with the observed value and the recently reconstructed global outgassing, both of which are subject to uncertainties. The model is also easily applicable to the deep-time Earth to investigate the influence of land plants on the global biogeochemical cycle.</p

    An increase in the biogenic aerosol concentration as a contributing factor to the recent wetting trend in Tibetan Plateau

    Get PDF
    A significant wetting trend since the early 1980s in Tibetan Plateau (TP) is most conspicuous in central and eastern Asia as shown in the instrumental data and the long-term moisture sensitive tree rings. We found that anomalies in the large-scale oceanic and atmospheric circulations do not play a significant role on the wetting trend in TP. Meanwhile, the weak correlation between local temperature and precipitation suggests that the temperature-induced enhancement of the local water cycle cannot fully explain the wetting trend either. This may indicate the presence of nonlinear processes between local temperature and precipitation. We hypothesize that the current warming may enhance the emissions of the biogenic volatile organic compounds (BVOC) that can increase the secondary organic aerosols (SOA), contributing to the precipitation increase. The wetting trend can increase the vegetation cover and cause a positive feedback on the BVOC emissions. Our simulations indicate a significant contribution of increased BVOC emissions to the regional organic aerosol mass and the simulated increase in BVOC emissions is significantly correlated with the wetting trend in TP.Peer reviewe

    Clay mineralogy indicates a mildly warm and humid living environment for the Miocene hominoid from the Zhaotong Basin, Yunnan, China

    Get PDF
    Global and regional environmental changes have influenced the evolutionary processes of hominoid primates, particularly during the Miocene. Recently, a new Lufengpithecus cf. lufengensis hominoid fossil with a late Miocene age of ~6.2 Ma was discovered in the Shuitangba (STB) section of the Zhaotong Basin in Yunnan on the southeast margin of the Tibetan Plateau. To understand the relationship between paleoclimate and hominoid evolution, we have studied sedimentary, clay mineralogy and geochemical proxies for the late Miocene STB section (~16 m thick; ca. 6.7–6.0 Ma). Our results show that Lufengpithecus cf. lufengensis lived in a mildly warm and humid climate in a lacustrine or swamp environment. Comparing mid to late Miocene records from hominoid sites in Yunnan, Siwalik in Pakistan, and tropical Africa we find that ecological shifts from forest to grassland in Siwalik are much later than in tropical Africa, consistent with the disappearance of hominoid fossils. However, no significant vegetation changes are found in Yunnan during the late Miocene, which we suggest is the result of uplift of the Tibetan plateau combined with the Asian monsoon geographically and climatically isolating these regions. The resultant warm and humid conditions in southeastern China offered an important refuge for Miocene hominoids

    Increased Variability of Thailand\u27s Chao Phraya River Peak Season Flow and Its Association With ENSO Variability: Evidence From Tree Ring ÎŽ\u3csup\u3e18\u3c/sup\u3eO

    Get PDF
    We present a statistically robust reconstruction of Thailand\u27s Chao Phraya River peak season streamflow (CPRPF) that spans the 202 years from 1804 to 2005 CE. Our reconstruction is based on tree ring ÎŽ18O series derived from three Pinus merkusii sites from Laos and Thailand. The regional ÎŽ18O index accounts for 57% of the observed variance of CPRPF. Spatial correlation and 21‐year running correlation analyses reveal that CPRPF is greatly influenced by regional precipitation variations associated with the El Niño–Southern Oscillation (ENSO). Periods of enhanced and reduced ENSO activity are associated with strong and weak ENSO‐streamflow correlation, respectively. At the longer timescale, the Pacific Decadal Oscillation (PDO) appears to modulate the ENSO‐streamflow correlations, with the most extreme flood events along the Chao Phraya River occurring during periods of increased frequency of La Niña events that coincide with extended cold phases of the PDO. The CPRPF reconstruction could aid management planning for Thailand\u27s water resources

    Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years

    Get PDF
    The Tibetan Plateau exerts a major influence on Asian climate, but its long-term environmental history remains largely unknown. We present a detailed record of vegetation and climate changes over the past 1.74 million years in a lake sediment core from the Zoige Basin, eastern Tibetan Plateau. Results show three intervals with different orbital- and millennial-scale features superimposed on a stepwise long-term cooling trend. The interval of 1.74–1.54 million years ago is characterized by an insolation-dominated mode with strong ~20,000-year cyclicity and quasi-absent millennial-scale signal. The interval of 1.54–0.62 million years ago represents a transitional insolation-ice mode marked by ~20,000- and ~40,000-year cycles, with superimposed millennial-scale oscillations. The past 620,000 years are characterized by an ice-driven mode with 100,000-year cyclicity and less frequent millennial-scale variability. A pronounced transition occurred 620,000 years ago, as glacial cycles intensified. These new findings reveal how the interaction of low-latitude insolation and high-latitude ice-volume forcing shaped the evolution of the Tibetan Plateau climate.publishedVersio

    Loess Correlations – Between Myth and Reality

    Get PDF
    Abstract The correlation of loess sequences across global, hemispheric, regional and local scales is one of the most fundamental aspects to loess research. However, despite recent progress in stratigraphic and chronometric methods, the correlation of many loess sequences is often still based on untested assumptions over loess deposition, preservation, soil type and age. As such, the aim of this overview is to provide an adequate framework for evaluation of the accuracy of loess correlations applied on different temporal and spatial scales across Eurasia. This opens up possibilities for detailed temporal and spatial environmental reconstructions across the huge loess provinces of the Eurasia and provides a framework for future extension of this to North America. Additionally, we evaluate the potential development of appropriate sub-millennial scale loess correlations, as well as essentially important chronological approaches for establishing valid correlations between different loess records, such as current improvements in tephrochronology, 14C and luminescence dating techniques

    Recent climate change has driven divergent hydrological shifts in high-latitude peatlands

    Get PDF
    A recent synthesis study found 54% of the high-latitude peatlands have been drying and 32% have been wetting over the past centuries, illustrating their complex ecohydrological dynamics and highly uncertain responses to a warming climate. High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.Peer reviewe
    • 

    corecore