186 research outputs found

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Production of Υ(nS) mesons in Pb+Pb and pp collisions at 5.02 TeV

    Get PDF
    A measurement of the production of vector bottomonium states, Υ ( 1S ) , Υ ( 2S ) , and Υ ( 3S ) , in Pb + Pb and p p collisions at a center-of-mass energy per nucleon pair of 5.02 TeV is presented. The data correspond to integrated luminosities of 1.38 nb − 1 of Pb + Pb data collected in 2018, 0.44 nb − 1 of Pb + Pb data collected in 2015, and 0.26 fb − 1 of p p data collected in 2017 by the ATLAS detector at the Large Hadron Collider. The measurements are performed in the dimuon decay channel for transverse momentum p μ μ T < 30 GeV , absolute rapidity | y μ μ | < 1.5 , and Pb + Pb event centrality 0–80%. The production rates of the three bottomonium states in Pb + Pb collisions are compared with those in p p collisions to extract the nuclear modification factors as functions of event centrality, p μ μ T , and | y μ μ | . In addition, the suppression of the excited states relative to the ground state is studied. The results are compared with theoretical model calculations

    Experimental generation of optical non-classical states of light with 1.34 

    No full text
    We report the experimental generation of the optical non-classical states with 1.34 μm wavelength which is close to one of the fiber telecommunication windows (1.31 μm). The single-mode amplitude squeezed states with quantum fluctuation of 2.3 ± 0.1 dB below the shot noise limit (SNL) and the entangled states with quantum correlation of 1.1 ± 0.1 dB below the SNL are produced by an optical parametric amplifier with a type-I phase-matched PPKTP crystal and a pair of properly oriented type-II phase-matched KTP crystals, respectively

    Constrained Global Optimization Using a New Exact Penalty Function

    No full text
    corecore