38 research outputs found

    Using histogram analysis of the intrinsic brain activity mapping to identify essential tremor

    Get PDF
    BackgroundEssential tremor (ET) is one of the most common movement disorders. Histogram analysis based on brain intrinsic activity imaging is a promising way to identify ET patients from healthy controls (HCs) and further explore the spontaneous brain activity change mechanisms and build the potential diagnostic biomarker in ET patients.MethodsThe histogram features based on the Resting-state functional magnetic resonance imaging (Rs-fMRI) data were extracted from 133 ET patients and 135 well-matched HCs as the input features. Then, a two-sample t-test, the mutual information, and the least absolute shrinkage and selection operator methods were applied to reduce the feature dimensionality. Support vector machine (SVM), logistic regression (LR), random forest (RF), and k-nearest neighbor (KNN) were used to differentiate ET and HCs, and classification performance of the established models was evaluated by the mean area under the curve (AUC). Moreover, correlation analysis was carried out between the selected histogram features and clinical tremor characteristics.ResultsEach classifier achieved a good classification performance in training and testing sets. The mean accuracy and area under the curve (AUC) of SVM, LR, RF, and KNN in the testing set were 92.62%, 0.948; 92.01%, 0.942; 93.88%, 0.941; and 92.27%, 0.939, respectively. The most power-discriminative features were mainly located in the cerebello-thalamo-motor and non-motor cortical pathways. Correlation analysis showed that there were two histogram features negatively and one positively correlated with tremor severity.ConclusionOur findings demonstrated that the histogram analysis of the amplitude of low-frequency fluctuation (ALFF) images with multiple machine learning algorithms could identify ET patients from HCs and help to understand the spontaneous brain activity pathogenesis mechanisms in ET patients

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Publisher's version (útgefin grein).Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.Alexander von Humboldt-StiftungPeer Reviewe

    A meta-analysis of genome-wide association studies identifies multiple longevity genes

    Get PDF
    Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity

    Calculation and control of DC bias current distribution in an AC power system around a typical ±800 kV DC grounding electrode

    No full text
    When the ultra-high-voltage direct current (UHVDC) transmission system operates in a monopolar ground return mode, an enormous DC current flows into earth via the DC grounding electrode in the converter station and then comes into the AC system around the converter station through the neutral earthed transformers, which will cause DC bias in AC systems and harm the transformers' safe operation. In this study, the DC current distribution in the AC systems around the Linyi converter station of the Shanghaimiao-to-Shandong UHVDC Transmission Project was studied. Based on the direct field-circuit coupled method, the DC bias calculation model was established in CDEGS. By using the model, the DC potential in the earth and the DC current distribution in the AC systems were calculated. Then, the DC current distribution in the AC systems was calculated and analysed after adopting a blocking capacitor and a resistor limiting method in a comprehensive way, and the effect of this controlling method was evaluated further. The research results have some practical engineering guiding significance for solving the DC bias problem of AC systems around the UHVDC grounding electrode

    Structural Performance of Composite Shear Walls under Compression

    No full text
    In order to research the effect of different layout forms of steel plate on the axial compression behavior of a steel plate-concrete composite shear wall, this paper presents the experimental results and analysis of the axial compression behavior of a composite shear wall, with different layout forms of steel plate. A total of three tests were carried out, composed of two composite walls with built-in steel plate, and one composite wall with two skins of steel plate. The gross dimensions of the three specimens were 1206 mm Ă— 2006 mm Ă— 300 mm. Experimental results show that the composite wall with two skins of steel plate has an optimal ability of elastic-plastic deformation, and the maximum axial compressive bearing capacity among the three specimens. Using the energy method, the critical local buckling stresses of steel plate were calculated, and compared with the yield stresses. According to different confined actions of concrete, concrete constitutive models were proposed, and the axial compressive strengths of confined concrete were calculated. Considering the local buckling of steel plate and confined concrete, the calculation formula of the axial compression of the composite wall was put forward, and the calculated results were in good agreement with the test results. Therefore, the different layout forms of steel plate have a great influence on its buckling, and on the concrete inhibition effect, which can affect the axial compressive bearing capacity of the composite wall

    The Research of Short-circuit Calculation and Optimization of Contain Distributed Power Distribution Network

    No full text
    Electric power industry as an indispensable energy supply in daily life and production, which is the main motive force of equipment operation in the industrial times. Therefore, in order to meet the development needs and ensure the safety of power supply, it is necessary to optimize and transform the power grid. So that energy conservation and security of supply and demand can be ensured. In this paper, the short-circuit calculation and optimization design of distributed power distribution network are studied deeply, aiming at improving the performance of power grid and promoting the rapid development and transformation of power industry

    The Effects of Dietary Protein Level on the Growth Performance, Body Composition, Intestinal Digestion and Microbiota of <i>Litopenaeus vannamei</i> Fed <i>Chlorella sorokiniana</i> as the Main Protein Source

    No full text
    This study investigated the effect of dietary protein levels on Litopenaeus vannamei. Five isolipid diets with protein levels of 32%, 36%, 40%, 44% and 48% were prepared using C. sorokiniana as the main protein source. L. vannamei (initial body weight 0.83 ± 0.02 g) were fed these five diets for 8 weeks and referred to as the CHL32, CHL36, CHL40, CHL44 and CHL48 groups, respectively. When the feeding trial was finished, the growth performance, body composition, intestinal digestion and microbiota of L. vannamei were studied. The results showed that the maximum weight gain rate (WGR) of L. vannamei was in the CHL40 group while the lowest feed conversion ratio (FCR) was in the CHL48 group. According to the regression analysis using WGR as the evaluation index, the best growth performance of L. vannamei was obtained when the dietary protein level was 40.81%. The crude protein content of whole shrimp showed an increasing and then decreasing trend with increasing dietary protein levels. Furthermore, the L. vannamei muscle amino acid composition was relatively stable and, to some extent, independent of dietary protein levels. Trypsin, lipase and amylase (AMS) activity increased and then decreased with increasing dietary protein levels and, significantly, peaked in the CHL44 group. Analysis of the alpha diversity of the intestinal microbiota showed that the Chao1 index peaked in the CHL40 group and was significantly lower in the CHL48 group. Additionally, the relative abundance of pathogenic bacteria decreased significantly while the relative abundance of beneficial bacteria increased significantly in the intestine of L. vannamei as the dietary protein levels increased. The functional prediction of the intestinal microbiota revealed that dietary protein levels may influence the growth of L. vannamei by regulating various metabolic activities, and the highest WGR in the CHL40 group may have been related to the significant enrichment of nicotinate and nicotinamide metabolism and biotin metabolism functions. In summary, the optimal protein requirement for L. vannamei was around 40% when C. sorokiniana was used as the primary protein source. Too high or too low dietary protein levels could adversely affect shrimp body composition, intestinal digestion and microbiota

    An Efficient Processing Approach for Colored Point Cloud-Based High-Throughput Seedling Phenotyping

    No full text
    Plant height and leaf area are important morphological properties of leafy vegetable seedlings, and they can be particularly useful for plant growth and health research. The traditional measurement scheme is time-consuming and not suitable for continuously monitoring plant growth and health. Individual vegetable seedling quick segmentation is the prerequisite for high-throughput seedling phenotype data extraction at individual seedling level. This paper proposes an efficient learning- and model-free 3D point cloud data processing pipeline to measure the plant height and leaf area of every single seedling in a plug tray. The 3D point clouds are obtained by a low-cost red&ndash;green&ndash;blue (RGB)-Depth (RGB-D) camera. Firstly, noise reduction is performed on the original point clouds through the processing of useable-area filter, depth cut-off filter, and neighbor count filter. Secondly, the surface feature histograms-based approach is used to automatically remove the complicated natural background. Then, the Voxel Cloud Connectivity Segmentation (VCCS) and Locally Convex Connected Patches (LCCP) algorithms are employed for individual vegetable seedling partition. Finally, the height and projected leaf area of respective seedlings are calculated based on segmented point clouds and validation is carried out. Critically, we also demonstrate the robustness of our method for different growth conditions and species. The experimental results show that the proposed method could be used to quickly calculate the morphological parameters of each seedling and it is practical to use this approach for high-throughput seedling phenotyping

    Polymorphism of segmented grain boundaries in two-dimensional transition metal dichalcogenides

    No full text
    Grain boundaries (GBs) are vital to crystal materials and their applications. Although GBs in bulk and two-dimensional materials have been extensively studied, the segmented GBs observed in transition metal dichalcogenide monolayers by a sequence of folded segments remain a mystery. We visualize the large-area distribution of the segmented GBs in MoSe2 monolayers and unravel their structural origin using ab initio calculations combined with high-resolution atomic characterizations. Unlike normal GBs in two-dimensional materials with commonly one type of dislocation cores, the segmented GBs consist of two basic elements-4|8 and 4|4|8 cores, whose alloying results in structural diversity and distinctly high stability due to relieved stress fields nearby. The defective polygons can uniquely migrate along the segmented GBs via the movement of single molybdenum atoms, unobtrusively endowing a given GB with variable appearances. Furthermore, the segmented GBs can achieve useful functionalities such as intrinsic magnetism and highly active electrocatalysis.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)National Research Foundation (NRF)This work was supported by the National Key Research and Development Program of China (2019YFA0705400), the National Natural Science Foundation of China (11772153, 22073048, 51802153), the Natural Science Foundation of Jiangsu Province (BK20190018), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-I-0419K01, MCMS-E-0420K01), the Fundamental Research Funds for the Central Universities (NJ2020003, NZ2020001), and a Project by the Priority Academic Program Development of Jiangsu Higher Education Institutions. It was also supported by the National Research Foundation Singapore program (NRF-CRP21-2018-0007, NRF-CRP22-2019-0007), the Singapore Ministry of Education via AcRF Tier 3 Program 'Geometrical Quantum Materials' (MOE2018-T3-1-002), AcRF Tier 2 (MOE2016-T2-1-131), and AcRF Tier 1 RG4/17 and RG7/18. This research was also supported by A*STAR under its AME IRG Grant (19283074)
    corecore