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Background: Essential tremor (ET) is one of the most common movement 
disorders. Histogram analysis based on brain intrinsic activity imaging is a promising 
way to identify ET patients from healthy controls (HCs) and further explore the 
spontaneous brain activity change mechanisms and build the potential diagnostic 
biomarker in ET patients.

Methods: The histogram features based on the Resting-state functional magnetic 
resonance imaging (Rs-fMRI) data were extracted from 133 ET patients and 135 
well-matched HCs as the input features. Then, a two-sample t-test, the mutual 
information, and the least absolute shrinkage and selection operator methods 
were applied to reduce the feature dimensionality. Support vector machine 
(SVM), logistic regression (LR), random forest (RF), and k-nearest neighbor (KNN) 
were used to differentiate ET and HCs, and classification performance of the 
established models was evaluated by the mean area under the curve (AUC). 
Moreover, correlation analysis was carried out between the selected histogram 
features and clinical tremor characteristics.

Results: Each classifier achieved a good classification performance in training 
and testing sets. The mean accuracy and area under the curve (AUC) of SVM, 
LR, RF, and KNN in the testing set were 92.62%, 0.948; 92.01%, 0.942; 93.88%, 
0.941; and 92.27%, 0.939, respectively. The most power-discriminative features 
were mainly located in the cerebello-thalamo-motor and non-motor cortical 
pathways. Correlation analysis showed that there were two histogram features 
negatively and one positively correlated with tremor severity.

Conclusion: Our findings demonstrated that the histogram analysis of the 
amplitude of low-frequency fluctuation (ALFF) images with multiple machine 
learning algorithms could identify ET patients from HCs and help to understand 
the spontaneous brain activity pathogenesis mechanisms in ET patients.
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Introduction

Essential tremor (ET) is one of the most common neurological 
disorders characterized by progressive tremor over time (1). The 2018 
consensus statement of the Movement Disorder Society redefined ET 
as isolated bilateral upper limb action or postural tremor with a 
duration of at least 3 years (2). Meantime, ET accompanied by other 
neurological symptoms such as parkinsonism, ataxia, rest tremor, or 
non-motor symptoms has been relabeled as “ET plus” (2). This revised 
definition gave some advantages to including highly homogeneous ET 
patients for clinical trials. However, it was only based on clinical 
characteristics, and the etiology, pathology, biology, and pathogenesis 
of ET, especially the spontaneous brain activity changes, are still 
very unclear.

Resting-state functional magnetic resonance imaging (Rs-fMRI) 
is a frequently used non-invasive clinical imaging technique. The 
amplitude of low-frequency fluctuations (ALFF) as a reliable metric 
of Rs-fMRI that can detect the amplitude of spontaneously 
low-frequency oscillations in blood oxygen level-dependent (BOLD) 
signals is a promising way to explore spontaneous brain activity 
changes in many neuropsychiatric and neurological disorders, 
including ET (3–7). The results of recent studies that used ALFF 
analysis did generally vary, and most of these studies supported the 
view that ALFF changes in the cerebello-thalamo-cortical network 
(which is defined as the “classical tremor network”) were associated 
with ET patients (3, 8, 9). However, these studies were traditional mass 
univariate analyses, and they could not be used to predict ET patients 
at an individual level. Meanwhile, these ALFF analysis methods only 
used the average value of the ALFF image, and the ALFF image 
actually contained vast numbers of quantitative information, such as 
the histogram analysis features. Fortunately, these shortcomings can 
be remedied by radiomics analysis. This can abstract vast quantitative 
features including histogram information from ALFF images, and 
then these features are inputted to machine learning (ML) algorithms 
(10–13). ML builds the optimal models by learning and training from 
massive input data and then applies the model to new data to predict 
and analyze diseases based on a single-subject level (14–16). Moreover, 
ML-combined radiomics has shown to be a promising way to provide 
quantitative and objective supports for clinical diagnosis and 
prognosis and help to find a potential target for treatment, such as 
using ML algorithms based on diagnosis biomarkers from 
neuroimaging to identify ET from HCs to provide supporting 
evidence for clinically suspected ET diagnosis and guide the treatment 
of ET patients. Using ML algorithms combined with voxel-level local 
connectivity or frequency-dependent intrinsic brain activity analysis, 
our more recent studies revealed that these ML algorithms could 
achieve good classification performance to identify ET from healthy 
controls (HCs) (17–19). However, up to now, no studies have 
combined histogram analysis based on ALFF images of Rs-fMRI data 
with ML algorithms to identify ET patients.

Hence, the primary objective of the present study is to explore 
whether combined histogram analysis of ALFF images with multiple 
ML algorithms could be used to effectively distinguish ET patients and 
HCs. We also expected that our proposed method would not only 
reveal the intrinsic brain activity changes but also further act as the 
potential diagnosis biomarker in ET patients via the brain regions of 
the most power-discriminative features. Finally, we compared and 

contrasted the traditional univariate analysis with our proposed novel 
machine learning method to investigate whether the machine learning 
method was more sensitive than the univariate analysis and could 
overcome the intrinsic weaknesses of univariate analysis.

Materials and methods

Participants

This study was approved by the Ethics Committee of the First 
Affiliated Hospital of Chongqing Medical University in accordance 
with the Declaration of Helsinki. All participants were recruited from 
the First Affiliated Hospital of Chongqing Medical University and 
were required to sign the informed consent. The inclusion criteria of 
participants were the following: (1) All ET patients were diagnosed by 
two experienced neurologists (OM C, and Z X) according to the 2018 
Movement Disorders Consensus Criteria; (2) the patients had an onset 
age between 18 to 55 years old, and patients with earlier or later onset 
were not included; (3) all participants were without thyroid disease, 
Parkinson’s disease, dystonia, psychogenic tremor, stroke, epilepsy, 
head injury, or any other neurological problems, and none of the HCs 
reported having relatives with ET; (4) all participants met the image 
quality and head motion control criteria (see Supplementary material). 
Finally, a total of 268 right-handed participants were recruited, 
including 133 ET patients and 135 age- and sex-matched HCs. In 
addition, demographic and clinical information was acquired before 
the completion of the MRI examination. The Fahn-Tolosa-Marin 
Tremor Rating Scale (TRS) and the Essential Tremor Rating 
Assessment Scale (TETRAS) were used to assess tremor severity and 
quality of life in ET patients. We also recorded the tremor frequency 
index from electromyography examination in ET patients. The Mini-
Mental State Examination (MMSE), 17-item Hamilton Depression 
Rating Scale (HDRS-17), and Hamilton Anxiety Rating Scale (HARS-
14) were used to briefly assess the cognitive function and mood status 
of all the participants, and we removed the patients with dementia 
(MMSE <24), depression (HDRS-17 > 7), and anxiety (HARS-14 > 7).

MRI data acquisition

All MRI images were acquired using a GE Signa Hdxt 3.0-T MRI 
scanner (General Electric Medical Systems, Waukesha, WI) equipped 
with a standard 8-channel head coil. Rs-fMRI data were acquired using 
an echo-planar imaging (EPI) sequence with the following scan 
parameters: repetition time (TR) = 2000 ms, echo time (TE) = 40 ms, flip 
angle (FA) = 90°, 33 axial slices, slice thickness/gap = 4.0/0 mm, field of 
view (FOV) = 240 × 240 mm, matrix = 64 × 64, and a total of 240 volumes 
were collected which lasted 8 min. High-resolution 3D T1-weighted 
images were acquired using the following parameters: TR =8.3 ms, TE 
=3.3 ms, FA = 15°, FOV = 240 × 240 mm, matrix = 256 × 192, and slice 
thickness/gap = 1.0/0 mm. T2-weighted FLAIR images (TR = 8,000 ms, 
TE = 126 ms, TI = 1,500 ms, slice thickness/gap = 5.0/1.5 mm, 
FOV = 240 × 240 mm, and matrix = 256 × 192) were also acquired. During 
the scanning process, participants were told to keep their eyes closed, relax 
without actively thinking and stay awake in particular. Earplugs and foam 
padding were used to reduce scanner noise and minimize head movement.
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Data preprocessing and ALFF calculation

Data preprocessing was conducted using the Data Processing and 
Analysis of Brain Imaging toolbox (DPABI) (20), and detailed data-
preprocessing steps were as follows: (1) Removal of the first 10 time 
points. For scanner stabilization and the acclimation of subjects to the 
MR scanning environment, the first 10 volumes were discarded, and 
the remaining 230 time points were included in the subsequent data 
preprocessing. (2) Slice timing correction. This was used to correct for 
a different acquisition time across slices in a volume. (3) Realignment. 
This was used to realign the subsequent functional images to the first 
volume to correct for within-run head motions, resulting in Friston 
24 head motion parameters. These parameters were employed to 
assess the head movement and ensure the quality of Rs-fMRI data. (4) 
T1 segmentation and spatial normalization. The T1 images were 
co-registered to the mean Rs-fMRI data for each subject. Specifically, 
3D T1-weighted images were segmented into gray matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF) probability maps using 
SPM DARTEL segmentation. All the GM, WM, and CSF images were 
resampled to isotropic 1.5-mm voxels, spatially normalized to the 
MNI space using both affine transformation and non-linear 
deformation, and later, resampled to isotropic 3-mm voxel resolution 
with Rs-fMRI, and the deformation field was applied to the Rs-fMRI 
data. (5) Regression out Friston’s 24 head motion parameters and the 
mean time series of global, WM, and CSF signals. (6) Spatial 
smoothing with a Gaussian kernel of 4 mm full width at half 
maximum. (7) Detrending and filtering. These steps removed the 
extremely low-frequency drift and the high-frequency physiological 
noises. For detrending, we used first-order polynomial functions, and 
for filtering, we adopted band-pass filtering (0.01 Hz ~ 0.08 Hz) to the 
time series for each voxel. ALFF analysis was based on the 
pre-processed images. DPABI was also used to compute the ALFF as 
Zang et al. (4) described. Briefly, the filtered time series of each voxel 
was transformed into the frequency domain by the Fast Fourier 
Transform. Then, the power spectrums of the signal between 
0.01 ~ 0.08 HZ were calculated, and the square roots of the power 
spectrums were ALFF values. Finally, for reducing the influence of 
individual ALFF variation and standardization purposes, the ALFF of 
each voxel was further divided by the global mean of ALFF values for 
each participant, and then individual smALFF maps were created of 
each subject for further analysis in our study.

Abstraction of the histogram features

In this study, due to the key role of the cerebellum in the essential 
tremor, a structural-based atlas (an automated anatomical labeling 
atlas 3 (AAL3) with detailed subdivisions of the cerebellum) was 
applied for the Rs-fMRI data rather than a more adaptable functional-
based atlas (Brainnetome atlas without the region of the cerebellum). 
Additionally, previous studies have demonstrated that some nuclei, 
such as the ventral posterior lateral nucleus of the thalamus and 
cerebellar dentate nucleus, were associated with tremor in ET patients 
(21–23). For the above-mentioned reasons, the AAL3 atlas with 
thalamus parcellation and combined bilateral cerebellar dentate 
nucleus was used to define the regions of interest (ROIs) in our study. 
However, some structures in the AAL3 altas (resolution: 1 × 1 × 1 mm) 
are so small (such as the nucleus reuniens of the thalamus and the 

right ventral tegmental area etc.) that they could not be identified in 
the Rs-fMRI images (resolution: 3 × 3 × 3 mm), and finally, only 159 
ROIs were defined for extracting 15 intensity-based histogram 
features, including the mean, median, maximum, range, variance, 
skewness, kurtosis, 10th percentile, 90th percentile, inter-quartile 
range, mean absolute deviation, robust mean absolute deviation, root 
mean squared, energy, and total energy. We extracted a total of 2,385 
histogram features from each participant’s mALFF images of Rs-fMRI 
data. The feature extraction procedure was performed using the open-
source python package pyradiomics, and the description and formula 
of each feature can be found on their website.1

Feature selection

Due to the curse-of-dimensionality or small-n-large-p problem 
(24), a total of 2,385 features greatly exceeded the sample size while 
most features were redundant and irrelevant. Therefore, feature 
selection is a necessary step to obtain the most important features and 
improve the accuracy of the model. Before the feature selection, the 
dataset was partitioned into training and testing sets in the ratio of 7:3, 
and a Z-score standardization was performed, respectively, to keep the 
data in sets mutually independent. Then, feature selection was 
conducted in the training set in three steps. Firstly, we performed a 
two-sample t-test on the 2,385 histogram features, and features with 
p < 0.01 were selected for the subsequent analysis. Then, the mutual 
information method (threshold = 0.1) was applied to further reduce 
dimensionality. Finally, we further applied a least absolute shrinkage 
and selection operator (LASSO) regression model to choose the most 
important features for classification (25). The LASSO performed both 
regularization and variable selection that compresses high-
dimensional data by shrinking coefficients for weaker predictors 
toward zero and dropping variables from the model when their 
coefficients reach zero. A penalty term (|βi|) is added to the linear 
regression model in LASSO, which can shrink coefficients towards 
zero (L1 regularization). As the penalty term increases, the Lasso sets 
more coefficients to zero. The loss function of LASSO is as follows:
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The penalization parameter λ was tuned under the criteria of 
minimal mean squared error (MSE) to construct the optimal subset 
of features via a 10-fold cross-validated grid-search approach. Features 
with non-zero coefficients in the LASSO regression model were 
selected to train the classification model.

Model construction and model evaluation

In our study, we constructed a nested loop to build the model; the 
outer loop was applied to evaluate the model performance by splitting 
the training and testing sets 100 rounds with a 7:3 ratio randomly, 

1 https://pyradiomics.readthedocs.io/en/latest/features.html
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while the inner loop was used to determine the best parameters of 
classifiers via a grid search method with 10-fold cross-validation. The 
whole procedure of the nested loop is illustrated in 
Supplementary Figure S1. We  used some common classifiers, the 
support vector machine with radial basis function kernel (RBF-SVM), 
logistic regression with the linear kernel (linear-LR, penalty = L2), 
random forest (RF), and k-nearest neighbor (KNN) to build models 
to differentiate ET and HCs based on the selected features. In the 
training set, a grid search method with 10-fold cross-validation was 
used to obtain the optimal parameters of each classifier (inner loop). 
After finding each optimal model, it was fitted to the entire training 
set and evaluated in the testing set, and this process was repeated 100 
times (outer loop).

We took the mean value of accuracy (mACC), balance accuracy 
(mBACC), sensitivity (mSN), and specificity (mSP) into account to 
assess the classification results, while the mean receiver operating 
characteristic (mROC) curve was plotted to determine the 
performance of the classifiers, and the mean area under the curve 
(mAUC) was applied to evaluate the classification performance and 
validity of the diagnosis of these models. The model with the highest 
mAUC in the testing set will be considered the best model because the 
mAUC in the blind testing set will further reflect the ability of the 
classifier to generalize new and unseen data from independently 
recruited participants. In addition, permutation tests (1,000 times) 
were performed to test the significance of model performances by 
evaluating whether the accuracy and AUC were significantly higher 
than values by chance (14, 26).

Identification of discriminative features

Due to the training set being slightly different in each outer 
iteration, the selected features were different, too. Therefore, 
we considered the features which were selected greater than or equal 
to 80 times in all 100 iterations as the most power-discriminative 
features and calculated the mean weights according to all outer 
iterations.

Statistical analysis

We used SPSS to statistical process and analyze the 
demographic and clinical characteristics, the Kolmogorov–
Smirnov test was used to assess the normality of continuous 
variables, the two-sample t-test was performed to analyze the 
normally distributed variables, the Mann–Whitney U test was 
used to analyze the non-normally distributed variables, and the 
chi-square test was applied to test the sex distribution. A partial 
Pearson’s correlation analysis was conducted to assess the 
relationships between the most power-discriminative features in 
the machine learning method and clinical tremor characteristics 
(e.g., tremor of onset, tremor of duration, tremor frequency, 
TRS-parts A&B, and TRS part C) in ET patients with the 
Bonferroni multiple corrections. A p-value <0.05 was considered 
statistically significant. Moreover, we  performed classical 
univariate analysis for the mean ALFF values with the two-sample 
t-test, and the threshold was set at p < 0.01 with the Bonferroni 
multiple corrections.

Results

Demographic and clinical characteristics

In this study, 133 ET patients and 135 HCs were included. The 
demographic and clinical characteristics of all participants are 
summarized in Table 1. The demographic and clinical characteristics 
between the ET and HCs did not differ, except for the HARS-14 and 
MMSE scores, which were significantly different between the two 
groups (p = 0.0005 and p = 0.0034, respectively).

Classification performance

Table  2 and Figure  1 show that the four classifiers including 
RBF-SVM, linear-LR, RF, and KNN achieved good classification 
performance in both the training and testing sets, implying the 
histogram radiomics analysis can effectively distinguish ET patients 
and HCs. In the training set, the mean accuracy and mAUC of the 
RBF-SVM, linear-LR, RF, and KNN are 94.87%, 0.970; 93.91%, 0.961; 
99.49%, 0.995; and 95.16% 0.979, respectively. Despite the superior 
performance of all methods that we used in the training set, what 
really matters is the predictive results in the testing set. In the testing 
set, the mean accuracy and mAUC of the RBF-SVM, linear-LR, RF, 
and KNN are 92.62%, 0.948; 92.01%, 0.942; 93.88%, 0.941; and 
92.27%, 0.939, respectively. The RBF-SVM classifier with the highest 
mAUC of 0.948 in the testing set was considered the best classifier, 
with mean accuracy and balance accuracy of 92.62 and 92.56%, 
respectively, mean sensitivity of 87.95%, and mean specificity of 
97.17%. Permutation tests were performed in each testing set, and the 
results indicated the reliability of the observed accuracy and AUC, 
with all p-values <0.001 in iteration.

Discriminative features

The most power-discriminative features were identified as features 
that were repeatedly selected ≥80% in the outer iteration, and these 
features were considered to be helpful for ET classification. A total of 
19 features are reported (Table 3; Figure 2), including the left cerebellar 
lobule III (Cerebellum_3_L)kurtosis, left cerebellar lobule IV ~ V with 
two features, (Cerebellum_4_5_L)mean, (Cerebellum_4_5_L)kurtosis, 
respectively; right cerebellar lobule IV ~ V with four features, 
(Cerebellum_4_5_R)mean, (Cerebellum_4_5_R)total energy, (Cerebellum_ 
4_5_R)kurtosis, (Cerebellum_4_5_R)90th percentile, respectively; right 
cerebellar lobule VIII (Cerebellum_8_R)90 Percentile; left medial 
mediodorsal nucleus of the thalamus (Thal_MDm_L)kurtosis; left lateral 
mediodorsal nucleus of the thalamus (Thal_MDl_L)variance; left ventral 
posterior lateral nucleus of the thalamus (Thal_VPL_L)kurtosis; right 
ventral posterior lateral nucleus of the thalamus (Thal_VPL_R)kurtosis; 
right precentral gyrus (Precentral_R)kurtosis; left medial superior frontal 
gyrus (Frontal_Sup_Med_L)kurtosis; right medial superior frontal gyrus 
(Frontal_Sup_Med_R)kurtosis; left insula (Insula_L)kurtosis; right insula 
(Insula_R)kurtosis; left supplementary motor area (Supp_Motor_
Area_L)kurtosis; and left dentate nucleus (dentate_L)mean.

Additionally, relative to HCs, the ET group showed decreased 
ALFF values in the (Cerebellum_3_L)kurtosis, (Cerebellum_4_5_L)kurtosis, 
(Cerebellum_4_5_L)mean, (Cerebellum_4_5_R)mean, (Cerebellum_ 
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4_5_R)total energy, (Cerebellum_4_5_R)kurtosis, (Cerebellum_4_5_R)90th 

percentile, (Cerebellum_8_R)90 Percentile, and (dentate_L)mean, but increased 
ALFF values in the (Precentral_R)kurtosis, (Frontal_Sup_Med_L)kurtosis, 
(Frontal_Sup_Med_R)kurtosis, (Insula_L)kurtosis, (Insula_R)kurtosis, and 
(Supp_Motor_Area_L)kurtosis. Moreover, the thalamus of the ET group 
showed increased ALFF values in the (Thal_MDm_L)kurtosis, (Thal_
MDl_L)variance, (Thal_VPL_L)kurtosis, and (Thal_VPL_R)kurtosis compared 
to HCs (see Supplementary Table S1).

Univariate analysis

The results of classical univariate analysis for the mean ALFF 
values with the two-sample t-test are reported in 
Supplementary Table S2. With a p-value <0.01, there were 24 features 
that showed significant group differences. However, only 11 features 
survived after the application of Bonferroni’s correction, including the 
bilateral cerebellar lobule III, cerebellar lobule IV ~ V, cerebellar lobule 

TABLE 1 Demographic and clinical features of ET and HCs.

Measure ET HCs Statistics p - value

Demographic

  Sample size 133 135 NA NA

  Age (years) 46.43 ± 14.14 44.58 ± 12.86 T = 1.12 0.2633

  Gender (M:F) 67:66 78:57 Z = −1.21 0.2249

  Education (years) 12.94 ± 4.47 12.25 ± 4.76 T = 1.22 0.2235

  Handedness (R/L) 133:0 135:0 Z = 0.00 1.0000

  Cigarette smoker 35/133 33/135 Z = −0.35 0.7253

Clinical of tremor

  Tremor of onset (years) 33.80 ± 10.60 NA NA NA

  Tremor of duration (years) 12.62 ± 9.28 NA NA NA

Positive family history NA NA NA

  Positive 39 NA NA NA

  Negative 94 NA NA NA

Alcohol sensitivity NA NA NA

  Positive 57 NA NA NA

  Negative 41 NA NA NA

  NA 35 NA NA NA

Tremor medication NA NA NA

  Propranolol 31(38.71 ± 18.48 mg) NA NA NA

Tremor symmetry NA NA NA

  R = L 96 NA NA NA

  R < L 11 NA NA NA

  R > L 26 NA NA NA

Tremor frequency 6.96 ± 2.30 NA NA NA

  TRS-parts A&B 23.31 ± 7.80 NA NA NA

  TRS-part C 12.85 ± 6.83 NA NA NA

  TETRAS 21.44 ± 7.14 NA NA NA

  TET-ADSL 13.52 ± 7.19 NA NA NA

Clinical of psychology and cognitive

  HDRS-17 2.13 ± 1.17 2.20 ± 1.25 T = −0.44 0.6629

  HARS-14 2.95 ± 1.19 2.28 ± 1.81 T = 3.51 0.0005

  MMSE 28.66 ± 1.28 29.12 ± 1.25 T = −2.96 0.0034

Head movement

  FD_power 0.01 ± 0.06 0.01 ± 0.06 T = −0.09 0.9323

  Scrubbing volumes 15.27 ± 7.95 15.77 ± 9.31 T = −0.47 0.6379

ET, essential tremor; HCs, healthy controls; HDRS-17, 17-item Hamilton Depression Rating Scale; MMSE, Mini-Mental State Examination; HARS-14, 14-item Hamilton Anxiety Rating Scale; 
TRS, Fahn-Tolosa-Marin Tremor Rating Scale.
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VI, cerebellar lobule VIII, left dentate nucleus, right ventral posterior 
lateral nucleus of the thalamus, and left lateral mediodorsal nucleus of 
the thalamus.

Correlations between the discriminative 
features and clinical tremor symptoms

Figure 3 showed the partial Pearson’s correlation analysis results, 
and 3 histogram features of ALFF parameters were significantly 
correlated with tremor severity in ET patients. The kurtosis of left 
cerebellar lobule IV ~ V and the total energy of right cerebellar lobule 
IV ~ V were negative correlation with TRS parts A&B (p < 0.001, 
r = −0.42 and − 0.43 respectively), and the kurtosis of right precentral 

gyrus was a positive correlation with TRS parts A&B (p < 0.001, 
r = 0.54).

Discussion

In the present study, histogram features based on intrinsic brain 
activity mapping were combined with multiple machine learning 
algorithms to identify ET patients from HCs, and four main findings 
were reported. First, all of the four machine learning algorithms—
RBF-SVM, linear-LR, RF, and KNN—achieved good classification 
performances; second, the most power-discriminative histogram 
features were mainly located in the cerebello-thalamo-motor and 
non-motor cortical pathways; third, some histogram features could 

TABLE 2 The classification performance in the training set and testing set.

Method Training set Testing set

mAUC mSN (%) mSP (%) mACC 
(%)

mbACC 
(%)

mAUC mSN (%) mSP (%) mACC 
(%)

mbACC 
(%)

SVM 0.970 89.91 ± 2.57 99.78 ± 4.68 94.87 ± 1.33 94.85 ± 1.34 0.948 87.95 ± 4.39 97.17 ± 3.71 92.62 ± 2.74 92.56 ± 2.74

LR 0.961 88.47 ± 2.07 99.30 ± 0.80 93.91 ± 1.22 93.89 ± 1.22 0.942 87.17 ± 4.50 96.73 ± 3.44 92.01 ± 2.54 91.95 ± 2.55

RF 0.995 98.99 ± 1.31 99.99 ± 1.06 99.49 ± 0.66 99.49 ± 0.66 0.941 89.25 ± 4.35 98.39 ± 1.98 93.88 ± 2.44 93.82 ± 2.46

KNN 0.979 90.59 ± 4.66 99.68 ± 0.57 95.16 ± 2.41 95.14 ± 2.42 0.939 87.18 ± 4.48 97.24 ± 2.73 92.27 ± 2.39 92.21 ± 2.40

The values are expressed as mean ± standard deviation (`x ± s); AUC, area under the curve; SN, sensitivity; SP, specificity; ACC, accuracy; bACC, balance accuracy; SVM, support vector 
machine; LR, logistic regression; RF, random forest; KNN, k-nearest neighbor. The bold values means the best mAUC in the testing set in four classifiers.

FIGURE 1

Receiver operating characteristic (ROC) curves and area under the curve (AUC) of four machine learning models. (A), (B), (C), and (D) showing the ROC 
curves and AUC of the support vector machine, logistic regression, random forest, k-nearest neighbor model in the training (blue line), and testing set 
(red line), respectively.
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be  used to partially explain clinical tremor symptoms. Further, 
compared to univariate analysis, we found that machine learning with 
histogram features is more sensitive to intrinsic brain activity.

Histogram analysis as one of the most common radiomics 
methods is a newly emerging area in quantitative image analysis, and 
in this process, the medical images were divided into amounts of 
quantitative features. On account of this advantage, a few studies have 
achieved good classification performance for identifying Parkinson’s 
disease from HCs or Alzheimer’s Disease from HCs (12, 26–28). 
When combining clinical symptoms or brain gray matter volumes 
with machine learning algorithms, a few studies achieved good 
classification performance in classifying ET from HCs (29–32). 
Consistent with the above studies, our studies also achieved good 
classification performance. In fact, in the univariate analysis, we found 
that 11 mean ALFF features showed significant group differences with 
the application of strict Bonferroni’s correction, but only three 
discrimination features were mean ALFF values in the machine 
learning method, and the other 16 features were histogram analysis 
features including the total energy, kurtosis, variance, and 90th 
percentile. One reason is that the two-sample t-test was only the first 
step of feature selection in our machine learning method, and most 
features that remained in the univariate analysis did not survive in the 
LASSO regression model, and another reason is that the histogram 
analysis could give more quantitative information. Additionally, 
traditional univariate analysis is based on differences between the ET 
group and HCs group, and could not be used to predict ET patients at 
an individual level. These aspects further suggested that machine 
learning combined with histogram features allows the discovery of 
potential diagnosis biomarkers, predicts ET patients at an individual 
level, and may be  more sensitive and accurate in revealing ALFF 

changes in ET patients, which overcomes the intrinsic weaknesses of 
univariate analysis.

Due to the benefits of predicting the individual subject and the 
multivariate nature of machine learning algorithms, radiomics 
analysis has been successfully used for neurological disease research 
and has provided quantitative and objective support for clinical 
diagnosis and disease prognosis (27, 33, 34). However, the clinical 
application of using machine learning algorithms to identify ET 
patients from HCs is limited. First, the generalizability should 
be further verified before the model is applied in clinical settings. 
Second, ET is a clinically evident condition that is easy to distinguish 
with HCs. Therefore, the expected purpose of this study is to reveal 
the intrinsic brain activity changes of ET and further act as the 
diagnosis biomarkers to identify ET from HCs. Third, misdiagnoses 
of ET are very common in clinical settings, such as being misdiagnosed 
as dystonic tremor, tremor-dominated PD, and even physiological 
tremors, etc. We hope to use the established diagnosis biomarkers of 
this study to differentiate ET with these disorders and reduce the 
misdiagnose rates in the future.

Using traditional ALFF analysis, very few studies revealed that 
ALFF changes in the classical tremor network were related to ET 
patients. However, these results were variable and even contradictory, 
and all of these studies did not reveal ALFF changes in the thalamus. 
Yin et al. (9) revealed that decreased ALFF in the cerebellum and 
increased ALFF in cerebral cortices were associated with ET patients. 
Li et al. (3) found a contradictory result, that increased ALFF in the 
cerebellum and decreased ALFF in cerebral cortices were involved 
in ET patients. However, our histogram analysis of ALFF values 
showed decreased ALFF values in the cerebellum and left dentate 
nucleus, with increased ALFF values in the cerebral cortices and the 

TABLE 3 The significant discriminative features between ET and HCs.

AAL3 number Features AAL3 brain areas Coefficient Frequency

102 Total energy Right cerebellar lobule IV ~ V 0.190466842 95

33 Kurtosis Left insula 0.034522173 98

129 Kurtosis Left ventral posterior lateral nucleus of the thalamus 0.032302957 90

2 Kurtosis Right precentral gyrus 0.030070535 99

20 Kurtosis Right medial superior frontal gyrus 0.029236559 99

34 Kurtosis Right insula 0.025480698 99

15 Kurtosis Left supplementary motor area 0.021742021 90

137 Variance Left lateral mediodorsal nucleus of the thalamus 0.021271266 82

135 Kurtosis Left medial mediodorsal nucleus of the thalamus 0.021267412 99

19 Kurtosis Left medial superior frontal gyrus 0.019697482 98

130 Kurtosis Right ventral posterior lateral nucleus of the thalamus 0.014803541 80

99 Kurtosis Left cerebellar lobule III −0.020707327 87

101 Kurtosis Left cerebellar lobule IV ~ V −0.021590975 82

102 Kurtosis Right cerebellar lobule IV ~ V −0.023882283 85

Mean Left dentate nucleus −0.044511876 89

108 90th percentile Right cerebellar lobule VIII −0.062860398 84

102 90th percentile Right cerebellar lobule IV ~ V −0.078035109 81

101 Mean Left cerebellar lobule IV ~ V −0.078885995 98

102 Mean Right cerebellar lobule IV ~ V −0.275559008 100

AAL3, Automated Anatomical Labeling 3.
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thalamus in the ET group. Our results seemed to be contradictory 
to Li et al. but in line with Yin et al. while also different in detail. 
We  speculated that the following reasons may be  reasonable 
explanations. First, ET is a kind of etiological, clinical, and 
pathological heterogeneity disease, and the heterogeneous properties 
may cause variable results from different researchers. Second, due to 
the small sample and absence of strict inclusion criteria, these results 
were more variable. Third, the ventral posterior lateral nucleus of the 
thalamus could not be identified in the common atlases, such as the 
anatomical automatic labeling atlas (AAL), Harvard Oxford atlas 
(HOA), and Brainnetome atlas (BNA), and these caused difficulty in 
directly revealing the ALFF changes in the classical tremor network. 
Finally, all the above studies also revealed ALFF changes in the 
cerebellar-cortical network. Therefore, our results were actually in 

line with the previous studies. Meantime, compared with the 
previous studies, a large sample size (133 ET patients and 135 HCs) 
and a strict inclusion (the 2018 Consensus Criteria of the Movement 
Disorder Society) were adopted in our studies. Meanwhile, the most 
power-discriminative features of histogram analysis changes were 
located in the classical tremor network, including the cerebellum, 
thalamus, and motor cortices. Growing evidence from 
histopathology, electrophysiological, neuroimaging, and 
neurobiology supported the view that the classical tremor network 
was associated with tremor in ET patients, and that especially the 
cerebellum played a vital role in tremor genesis. Very limited post-
mortem studies showed that loss of Purkinje cells and changes in 
Purkinje cell morphology, including in the axonal and dendritic 
compartments, such as axonal swelling (torpedoes), thickened 

FIGURE 2

The selected most power-discriminative features. (A) shows the mean weight of the selected most power-discriminative features, and y-axis 
represents the most power-discriminative features, with their mean coefficients in the LASSO analysis plotted on the x-axis, of the same color mean 
the same type features. (B) shows the most power-discriminative features between ET and HCs groups, and the color bar value represents the 
frequency of the features.
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axonal profiles, increased recurrent axonal collaterals, axonal 
sprouting, and dendritic swelling, were the tissue-specific 
pathological characteristics of ET (35, 36). Evidence from 
electrophysiological assessments showed eyeblink conditioning was 
impaired in ET patients, an index of motor learning that relies on 
intact cerebellum (37). Moreover, using regional homogeneity, 
functional connectivity, or degree centrality analysis of Rs-fMRI 
(23), rhythmic finger tapping test fMRI (22), and positron emission 
tomography (PET) (38), studies also observed the central role of the 
cerebellum in the tremor genesis. Therefore, we suggest that the 
most power-discriminative features located in the classical tremor 
network further reinforced the classical tremor network pathogenesis 
theories, and decreased histogram analysis matrices in the 
cerebellum, such as those to assess total energy, kurtosis, mean and 
90th percentile, which possibly reflect the primary pathological 
injury of the cerebellum in ET patients.

Moreover, most power-discriminative features were not only 
confined to the classical tremor network but also extended to the 
cerebello-non-motor cortical circuits, including the bilateral 
superior frontal gyrus and insula, and it seemed difficult for us to 

understand these aspects. First, growing evidence has indicated that 
ET is a syndrome caused by primary pathological damage in the 
cerebellum. The cerebellum has extensive connectivity with cerebral 
cortices including motor and non-motor cortices and regulates 
motor and non-motor functions. Second, strict inclusion criteria 
without gross cognitive impairment, depression, and anxiety were 
adopted to gain a highly homogeneous ET cohort in our study. The 
HARS-14 and MMSE scores were significantly different between the 
patients with ET and HCs in our study, and the differences between 
them are suggested to be based on confounding factors. However, 
all these ET patients could not meet the diagnosis of ET with 
anxiety and ET with total cognitive impairment according to the 
Diagnostic and Statistical Manual of Mental Disorders version four 
(DSM-IV) criteria and MMSE criteria, respectively. Additionally, 
we removed some ET patients with sub-threshold anxiety and total 
cognitive impairment (3 ET with HARS-14 scores in 6 and 4 ET 
with HARS-14 scores in 5, 2 ET with MMSE scores in 24 and 3 ET 
with MMSE scores in 25). We retained the HARS-14 and MMSE 
scores without significant difference between ET and HCs groups 
and repeated our study, and we gained similar results to before, with 

FIGURE 3

Partial Pearson Correlation analysis results between the selected histogram features and clinical tremor characteristics in ET patients. Bonferroni 
multiple comparison corrections, corrected p < 0.05/19*(19–1)/2. Violin plots displaying the mean and standard deviations of the selected histogram 
features in the ET and HCs group; scatter plots showing the correlation analysis in the ET group. ***p < 0.001. ET, essential tremor; HCs, healthy 
controls; zTRS A&B scores, z-transformed Fahn-Tolosa-Marin Tremor Rating Scale parts A and B scores.
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a good classification performance also showing the most 
discriminative features involved in cerebello-thalamo-motor and 
non-motor cortical pathways. Based on the above reasons, anxiety 
symptoms and cognitive status as confounding factors would not 
have changed the results in this study. Moreover, we acknowledge 
that the ET patients’ motor and non-motor symptoms were seen in 
the clinical setting, so our strict inclusion criteria could not remove 
the possibility of development of the above non-motor symptoms 
in the future or even remove a compensatory state to prevent the 
development of these non-motor symptoms.

Limitations

There are several limitations to this study. First, although the 
relatively larger sample size and a good classification performance 
were achieved in our study, multi-center data would allow our results 
to be  more generalization and stable in the future. Second, only 
histogram analysis of intrinsic brain activity mapping was selected as 
the input feature, and combined multimodal imaging data with 
clinical metrics would perhaps give more precise results in the future. 
Third, we reported the results using the structural-based AAL3 atlas 
rather than the functional-based Brainnetome atlas in the study based 
on Rs-fMRI data. A more adaptable functional-based atlas that 
contains the cerebrum and cerebellum could be used in the future to 
achieve further study aims. Finally, the diagnosis of ET relied only on 
clinical symptoms and neurological examinations. Due to the absence 
of diagnostic biomarkers and that misdiagnosis is common, 
we  adopted strict enrollment criteria and annual follow-up to 
reduce misdiagnoses.

Conclusion

In this study, combining histogram analysis of ALFF images with 
multiple machine learning algorithms achieved good classification 
performance for identifying ET patients from HCs. The most power-
discriminatory features were not only confined to the typical tremor 
networks but also extended into non-motor networks, and these 
features can help to understand spontaneous brain activity 
pathogenesis mechanisms in ET patients.
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