176 research outputs found

    Ruscogenin alleviates palmitic acid-induced endothelial cell inflammation by suppressing TXNIP/NLRP3 pathway

    Get PDF
    Purpose: To investigate the involvement of ruscogenin in palmitic acid (PA)-induced endothelial cell inflammation. Method: Cultured human umbilical vein endothelial cells (HUVECs) were divided into five groups: control (normal untreated cells), PA (cell treated with palmitic acid), and PA + ruscogenin (1, 10, or 30 ÎŒM). Cell viability and apoptosis rate were determined using MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5- di-phenytetrazolium bromide) and flow cytometry assays, respectively. The levels of cytokines, including interleukin-1ÎČ (IL-1ÎČ), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemo-attractant protein-1 (MCP-1) were determined by an enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to evaluate the underlying mechanisms of action. Results: PA treatment decreased the viability of HUVECs and induced apoptosis (p < 0.05). Ruscogenin attenuated PA-induced cell death in a dose-dependent manner (p < 0.05). On the other hand, PA induced an increase in IL-1ÎČ, TNF-α, ICAM-1, MCP-1, TXNIP (thioredoxin-interacting protein),as well as NLRP3 (nucleotide oligomerization domain-, leucine-rich repeat- and pyrin domain-containing protein 3), all of which were attenuated by ruscogenin (p < 0.05). Conclusion: Ruscogenin alleviates PA-induced endothelial cell inflammation via TXNIP/NLRP3 pathway, thereby providing an insight into new therapeutic strategies to treat cardiovascular diseases. Keywords: Ruscogenin, Palmitic acid, Endothelial cells, Inflammation, TXNIP, NLRP3, Cardiovascular disease

    A Systematic Methodology for Multi-Images Encryption and Decryption Based on Single Chaotic System and FPGA Embedded Implementation

    Get PDF
    A systematic methodology is developed for multi-images encryption and decryption and field programmable gate array (FPGA) embedded implementation by using single discrete time chaotic system. To overcome the traditional limitations that a chaotic system can only encrypt or decrypt one image, this paper initiates a new approach to design n-dimensional (n-D) discrete time chaotic controlled systems via some variables anticontrol, which can achieve multipath drive-response synchronization. To that end, the designed n-dimensional discrete time chaotic controlled systems are used for multi-images encryption and decryption. A generalized design principle and the corresponding implementation steps are also given. Based on the FPGA embedded hardware system working platform with XUP Virtex-II type, a chaotic secure communication system for three digital color images encryption and decryption by using a 7D discrete time chaotic system is designed, and the related system design and hardware implementation results are demonstrated, with the related mathematical problems analyzed

    High channel count and high precision channel spacing multi-wavelength laser array for future PICs

    Get PDF
    Multi-wavelength semiconductor laser arrays (MLAs) have wide applications in wavelength multiplexing division (WDM) networks. In spite of their tremendous potential, adoption of the MLA has been hampered by a number of issues, particularly wavelength precision and fabrication cost. In this paper, we report high channel count MLAs in which the wavelengths of each channel can be determined precisely through low-cost standard Όm-level photolithography/holographic lithography and the reconstruction-equivalent-chirp (REC) technique. 60-wavelength MLAs with good wavelength spacing uniformity have been demonstrated experimentally, in which nearly 83% lasers are within a wavelength deviation of ±0.20 nm, corresponding to a tolerance of ±0.032 nm in the period pitch. As a result of employing the equivalent phase shift technique, the single longitudinal mode (SLM) yield is nearly 100%, while the theoretical yield of standard DFB lasers is only around 33.3%

    “Mn-locking” effect by anionic coordination manipulation stabilizing Mn-rich phosphate cathodes

    Get PDF
    High-voltage cathodes with high power and stable cyclability are needed for high-performance sodium-ion batteries. However, the low kinetics and inferior capacity retention from structural instability impede the development of Mn-rich phosphate cathodes. Here, we propose light-weight fluorine (F) doping strategy to decrease the energy gap to 0.22 eV from 1.52 eV and trigger a “Mn-locking” effect—to strengthen the adjacent chemical bonding around Mn as confirmed by density functional theory calculations, which ensure the optimized Mn ligand framework, suppressed Mn dissolution, improved structural stability and enhanced electronic conductivity. The combination of in situ and ex situ techniques determine that the F dopant has no influence on the Na+ storage mechanisms. As a result, an outstanding rate performance up to 40C and an improved cycling stability (1000 cycles at 20C) are achieved. This work presents an effective and widely available light-weight anion doping strategy for high-performance polyanionic cathodes

    Autistic clinical profiles, age at first concern, and diagnosis among children with autism spectrum disorder

    Get PDF
    BackgroundTo explore the relationship between autistic clinical profiles and age at first concern and diagnosis among children with autism spectrum disorder. The clinical profiles included the severity of autism, cognition, adaptability, language development, and regression.MethodsThe multivariate linear regression model was used to examine the association of diagnostic age and first-concern age with autistic clinical profiles and with further stratification analysis.ResultsA total of 801 autistic children were included. Language delay and regression were associated with earlier diagnostic age (language delay: crudeÎČ: −0.80, 95%CI%: −0.92–−0.68; regression: crudeÎČ: −0.21, 95%CI%: −0.43–−0.00) and the age of first concern of autistic children (language delay: crudeÎČ: −0.55, 95%CI%: −0.65–−0.45; regression: crudeÎČ: −0.17, 95%CI%: −0.34–−0.00). After stratification by sex, language delay tended to be more associated with the earlier diagnostic age among boys (crudeÎČ: −0.85, 95%CI%: −0.98–−0.72) than among girls (crudeÎČ: −0.46, 95%CI%: −0.77–−0.16). After stratification by maternal education level or family income level, language delay was most associated with the earlier diagnostic age in autistic children from families with higher socioeconomic levels.ConclusionLanguage delay, rather than other symptoms, promoted an earlier diagnostic age. Among male autistic children or children from families with higher socioeconomic levels, language delay was most significantly associated with an earlier age of diagnosis. Cognitive delay, or adaptive delay, was associated with a later age at diagnosis and presented only in autistic children from families with lower socioeconomic levels. There may be sex or socioeconomic inequality in the diagnostic age for autistic children. More publicity and public education about the diversity of autistic symptoms are urgently needed in the future, especially for low-socioeconomic families

    Quantitative assessment of the stent/scaffold strut embedment analysis by optical coherence tomography

    Get PDF
    The degree of stent/scaffold embedment could be a surrogate parameter of the vessel wall-stent/scaffold interaction and could have biological implications in the vascular response. We have developed a new specific software for the quantitative evaluation of embedment of struts by optical coherence tomography (OCT). In the present study, we described the algorithm of the embedment analysis and its reproducibility. The degree of embedment was evaluated as the ratio of the embedded part versus the whole strut height and subdivided into quartiles. The agreement and the inter- and intra-observer reproducibility were evaluated using the kappa and the interclass correlation coefficient (ICC). A total of 4 pullbacks of OCT images in 4 randomly selected coronary lesions with 3.0 × 18 mm devices [2 lesions with Absorb BVS and 2 lesions with XIENCE (both from Abbott Vascular, Santa Clara, CA, USA)] from Absorb Japan trial were evaluated by two investigators with QCU-CMS software version 4.69 (Leiden University Medical Center, Leiden, The Netherlands). Finally, 1481 polymeric struts in 174 cross-sections and 1415 metallic struts in 161 cross-sections were analyzed. Inter- and intra-observer reproducibility of quantitative measurements of embedment ratio and categorical asses

    Observation of topological electronic structure in quasi-1D superconductor TaSe3

    Full text link
    Topological superconductors (TSCs), with the capability to host Majorana bound states that can lead to non-Abelian statistics and application in quantum computation, have been one of the most intensively studied topics in condensed matter physics recently. Up to date, only a few compounds have been proposed as candidates of intrinsic TSCs, such as doped topological insulator CuxBi2Se3 and iron-based superconductor FeTe0.55Se0.45. Here, by carrying out synchrotron and laser based angle-resolved photoemission spectroscopy (ARPES), we systematically investigated the electronic structure of a quasi-1D superconductor TaSe3, and identified the nontrivial topological surface states. In addition, our scanning tunneling microscopy (STM) study revealed a clean cleaved surface with a persistent superconducting gap, proving it suitable for further investigation of potential Majorana modes. These results prove TaSe3 as a stoichiometric TSC candidate that is stable and exfoliable, therefore a great platform for the study of rich novel phenomena and application potentials.Comment: to appear in Matte

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Integrative Analysis of Identifying Methylation-Driven Genes Signature Predicts Prognosis in Colorectal Carcinoma

    Get PDF
    BackgroundAberrant DNA methylation is a critical regulator of gene expression and plays a crucial role in the occurrence, progression, and prognosis of colorectal cancer (CRC). We aimed to identify methylation-driven genes by integrative epigenetic and transcriptomic analysis to predict the prognosis of CRC patients.MethodsMethylation-driven genes were selected for CRC using a MethylMix algorithm and LASSO regression screening strategy, and were further used to construct a prognostic risk-assessment model. The Cancer Genome Atlas (TCGA) database was obtained as the training set for both the screening of methylation-driven genes and the effect of genes signature on CRC prognosis. Then, the prognostic genes signature was validated in three independent expression arrays of CRC data from Gene Expression Omnibus (GEO).ResultsWe identified 143 methylation-driven genes, of which the combination of BATF, PHYHIPL, RBP1, and PNPLA4 expression levels was screened as a better prognostic model with the best area under the curve (AUC) (AUC = 0.876). Compared with patients in the low-risk group, CRC patients in the high-risk group had significantly poorer overall survival in the training set (HR = 2.184, 95% CI: 1.404–3.396, P < 0.001). Similar results were observed in the validation set. Moreover, VanderWeele’s mediation analysis indicated that the effect of methylation on prognosis was mediated by the levels of their expression (HRindirect = 1.473, P = 0.001, Proportion mediated, 69.10%).ConclusionsWe identified a four-gene prognostic signature by integrative analysis and developed a risk-assessment model that is significantly associated with patients’ survival. Methylation-driven genes might be a potential prognostic signature for CRC patients

    HNRNPM controls circRNA biogenesis and splicing fidelity to sustain cancer cell fitness

    Get PDF
    High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified HNRNPM as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and back-splicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM dependent linear splicing events using splice-switching-antisense-oligonucleotides (SSOs) was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors
    • 

    corecore