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A systematic methodology is developed for multi-images encryption and decryption and field programmable gate array (FPGA)
embedded implementation by using single discrete time chaotic system. To overcome the traditional limitations that a chaotic
system can only encrypt or decrypt one image, this paper initiates a new approach to design n-dimensional (n-D) discrete time
chaotic controlled systems via some variables anticontrol, which can achieve multipath drive-response synchronization. To that
end, the designed n-dimensional discrete time chaotic controlled systems are used for multi-images encryption and decryption. A
generalized design principle and the corresponding implementation steps are also given. Based on the FPGA embedded hardware
systemworking platformwith XUPVirtex-II type, a chaotic secure communication system for three digital color images encryption
and decryption by using a 7D discrete time chaotic system is designed, and the related system design and hardware implementation
results are demonstrated, with the related mathematical problems analyzed.

1. Introduction

Chaos control refers to purposefully eliminating or weak-
ening chaotic behavior of systems through control methods
when the chaotic motion is harmful. Since the OGY method
was proposed in 1990 [1], much effort has been devoted to the
study of controlling chaos. However, not all chaotic behaviors
are harmful, and recent research has shown that chaos
can actually be useful under certain circumstances, such
as liquid mixing, information processing, flexible systems
design, and secret communications.Therefore, chaotification
by means of making an originally nonchaotic dynamical
system chaotic, or enhancing existing chaos, has attracted
some special attention lately. In 1994, Schiff et al. proposed the
idea of chaos anticontrol [2]. In 1996, Chen and Lai proposed
the Chen-Lai algorithm, which uses a linear state feedback
controller and amod-operation for the whole system tomake
all the Lyapunov exponents of the controlled system strictly
positive, thereby obtaining chaos in the sense of Li-Yorke
or Devaney [3–7]. Thereafter, Wang and Chen put forward

the Wang-Chen algorithm [4, 8]. The idea of the Chen-Lai
and Wang-Chen algorithms is to design a linear state feed-
back controller, which can change the eigenvalues of the sys-
tem Jacobian matrix, thereby assigning desirable Lyapunov
exponents to the controlled system [4]. In addition, some
methods are also developed for anticontrol of continuous-
time dynamical systems [9–11].

It is well known that the distinct properties of chaos, such
as positive Lyapunov exponents, ergodicity, quasirandom-
ness, sensitively dependence on initial conditions, and system
parameters, have granted chaotic dynamics as a promising
alternative for the conventional cryptographic algorithms.
More importantly, unlike the conventional cryptographic
algorithms which are mainly based on discrete mathematics,
chaos-based cryptography relied on the complex dynamics
of nonlinear systems or maps which are deterministic but
simple. Therefore, it can provide a fast and secure means
for data protection, which is crucial for multimedia data
transmission over fast communication channels, such as the
broadband internet communication [12–15]. Just because of
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this, in recent years, numerous efforts have been devoted to
develop various chaos-based image encryptions and secure
communications. For all that, to the best of our knowledge,
it is the most conventional practice that a chaotic system
can only encrypt or decrypt one image by means of block
cipher-based or stream cipher-based chaos discrete mapping
[16–26]. One may ask whether or not there is a possible way
further to break such a limitation so as to encrypt and decrypt
multi-images by using single chaotic system.This paper gives
a positive answer to the question.

In this paper, differing from the Chen-Lai and Wang-
Chen algorithms, a new approach for designing n-dimen-
sional discrete-time chaotic systems via some state-variable
anticontrol is initiated, and a generalized design principle and
the corresponding implementation steps are also given. To
be specific, in order to overcome the traditional limitations
that a chaotic system can only encrypt or decrypt one image,
a discrete time nominal system with a stable saddle-focus
at the origin is firstly designed. Then, one can do similarity
transformation and introduce a controller on the nominal
system via some state variable anticontrol, to obtain the
related controlled chaotic system, which can achieve mul-
tipath drive-response synchronization. On the basis of this,
a systematic methodology can be developed here for multi-
images encryption and decryption by using single discrete
time chaotic system. To that end, three 160 × 120 BMP digital
color images with 24-bit per pixel are taken as examples
for implementation and application. On the transmitter side,
three 32-bit chaotic stream ciphers generated by a discrete-
time chaotic system are used. For every 24-bit pixel, only 8-bit
pixel is encrypted each time since the Ethernet transmission
protocols and agreements are taken into account. The three
encrypted digital color images are transmitted through LAN
with only a router by using the time division multiplexing
approach. On the receiver end, through a corresponding
reverse operation, three encrypted digital color images can be
decrypted if synchronization is achieved. Based on the FPGA
embedded hardware system working platform with FPGA
chip model XUP Virtex-II, a chaotic secure communication
system for three digital color images encryption and decryp-
tion by using a 7D discrete time chaotic system is designed
and implemented, with experimental results demonstrated.
Both theoretical analysis and experimental results confirm
the feasibility of this approach. More importantly, the main
reasons why the presented system works well are given by
the rigorousmathematical proof both for chaos existence and
rapid synchronized convergence, since both of them play a
very important role in image encryption and decryption.

The rest of the paper is organized as follows. A controlled
chaotic system is designed via some variable anticontrol in
Section 2. A representative example is given in Section 3.
Multipath drive-response synchronization based on single
chaotic system is given and analyzed in Section 4. FPGA
embedded implementation for three digital color images
encryption and decryption is implemented and demon-
strated in Section 5. The corresponding NIST test results are
given in Section 6. Finally, Section 7 concludes the paper.

2. Design of Discrete Time Chaotic System via
Some Variable Anticontrol

2.1. Nominal SystemDesign. Consider 𝑛 (𝑛 ≥ 4)-dimensional
discrete time linear nominal system:

𝑥 (𝑘 + 1) = 𝐵𝑥 (𝑘) , (1)

where

𝑥 (𝑘 + 1) = (

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

...
𝑥
𝑛
(𝑘 + 1)

)

𝑛×1

, 𝑥 (𝑘) = (

𝑥
1
(𝑘)

𝑥
2
(𝑘)

...
𝑥
𝑛
(𝑘)

)

𝑛×1

,

𝐵 = (

𝑏
11

𝑏
12

⋅ ⋅ ⋅ 𝑏
1𝑛

𝑏
21

𝑏
22

⋅ ⋅ ⋅ 𝑏
2𝑛

...
... d

...
𝑏
𝑛1

𝑏
𝑛2

⋅ ⋅ ⋅ 𝑏
𝑛𝑛

)

𝑛×𝑛

.

(2)

Assume that 𝐵 has a generalized form of block diagonal
matrix. In the following, two conditions are involved.

(1) When 𝑛 is an even number, letting 𝑚 = 𝑛/2, one gets
the generalized form of 𝐵:

𝐵 = (

𝐵
1

0 0 ⋅ ⋅ ⋅ 0

0 𝐵
2

0 ⋅ ⋅ ⋅ 0

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐵
𝑚−1

0

0 0 ⋅ ⋅ ⋅ 0 𝐵
𝑚

)

𝑛×𝑛

, (3)

where 𝐵
𝑚
is a 2 × 2 block matrix, given by

𝐵
𝑚
= (

𝛾
𝑚

𝜔
𝑚1

𝜔
𝑚2

𝛾
𝑚

) . (4)

According to (3) with (4), letting 𝜔
𝑚1

⋅ 𝜔
𝑚2

< 0, one gets
the characteristic roots of 𝐵 at the origin:

𝜆
2𝑚−1,2𝑚

= 𝛾
𝑚
± 𝑗√





𝜔
𝑚1

⋅ 𝜔
𝑚2





, (5)

where𝑚 = 1, 2, 3, . . . , 𝑛/2.
When 𝛾

𝑖
̸= 𝛾
𝑗
, 𝜔
𝑖1
⋅ 𝜔
𝑖2

̸= 𝜔
𝑗1
⋅ 𝜔
𝑗2

(𝑖, 𝑗 = 1, 2, . . . , 𝑛/2; 𝑖 ̸= 𝑗)

are satisfied, there exist 𝑛 distinct eigenvalues. Particularly,
when |𝜆

2𝑚−1,2𝑚
| < 1, 𝑛 characteristic roots of 𝐵 are

located inside the unit circle, making the nominal system
asymptotically stable.

(2) When 𝑛 is an odd number, letting𝑚 = (𝑛 − 1)/2, one
gets the generalized form of 𝐵:

𝐵 =
(
(

(

𝐵
1

0 0 ⋅ ⋅ ⋅ 0 0

0 𝐵
2

0 ⋅ ⋅ ⋅ 0 0

...
... d

...
...

...
0 0 0 𝐵

𝑚−1
⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 𝐵
𝑚

0

−1 −1 −1 ⋅ ⋅ ⋅ −1 𝛾
𝑛

)
)

)𝑛×𝑛

, (6)

where 𝐵
𝑚
is a 2 × 2 block matrix, also given by (4).
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Suppose 𝜔
𝑚1

⋅ 𝜔
𝑚2

< 0; one gets the characteristic roots
of 𝐵 at the origin:

𝜆
2𝑚−1,2𝑚

= 𝛾
𝑚
± 𝑗√





𝜔
𝑚1

⋅ 𝜔
𝑚2





.

𝜆
𝑛
= 𝛾
𝑛
,

(7)

where𝑚 = (𝑛 − 1)/2.
When 𝛾

𝑖
̸= 𝛾
𝑗
, 𝜔
𝑖1
⋅𝜔
𝑖2

̸= 𝜔
𝑗1
⋅𝜔
𝑗2

(𝑖, 𝑗 = 1, 2, . . . , 𝑛/2; 𝑖 ̸= 𝑗)

are satisfied, there exist 𝑛 distinct eigenvalues. Especially,
when |𝜆

2𝑚−1,2𝑚
| < 1 and |𝜆

𝑛
| < 1, 𝑛 characteristic roots of 𝐵

are located inside the unit circle, making the nominal system
asymptotically stable.

Do similarity transformation on nominal system (1). It is
noted that, except for the block diagonal matrix 𝐵

𝑚
and 𝛾
𝑛
,

the remaining elements are zeros in 𝐵. In order to effectively
control the nominal system, do similarity transformation on
the nominal system (1), such that

𝐴 = 𝑃𝐵𝑃
−1
, (8)

where 𝑃 is an invertible matrix in the form of

𝑃 = (

0 1 ⋅ ⋅ ⋅ 1 1

1 0 ⋅ ⋅ ⋅ 1 1

...
... d

...
...

1 1 ⋅ ⋅ ⋅ 0 1

1 1 ⋅ ⋅ ⋅ 1 0

)

𝑛×𝑛

. (9)

Finally, one gets the nominal system after doing similarity
transformation:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) , (10)

where

𝐴 = 𝑃𝐵𝑃
−1

= (

𝑎
11

𝑎
12

⋅ ⋅ ⋅ 𝑎
1𝑛

𝑎
21

𝑎
22

⋅ ⋅ ⋅ 𝑎
2𝑛

...
... d

...
𝑎
𝑛1

𝑎
𝑛2

⋅ ⋅ ⋅ 𝑎
𝑛𝑛

)

𝑛×𝑛

. (11)

It is especially pointed that, after similarity transforma-
tion, 𝐴 and 𝐵 have the same characteristic polynomial and
eigenvalues.That is, the nominal system (1) and the converted
nominal system (10) have the same stability.

2.2. Controlled Chaotic System Design via Some Variable Anti-
control. According to (10), by selecting 𝑥

𝑚
(𝑘), 𝑥
𝑚+1

(𝑘), . . . ,

𝑥
𝑛
(𝑘) from 𝑥(𝑘) as 𝑙 feedback control variables, one can

design a uniformly bounded controller:

𝑔 (𝜎𝑥, 𝜀) =

(
(
(
(
(

(

𝑔
1
(𝜎
1
𝑥
𝑚
, 𝜀
1
)

𝑔
2
(𝜎
2
𝑥
𝑚+1

, 𝜀
2
)

...
𝑔
𝑙
(𝜎
𝑙
𝑥
𝑛
, 𝜀
𝑙
)

0

...
0

)
)
)
)
)

)𝑛×1

=

(
(
(
(
(

(

mod(𝜎
1
𝑥
𝑚
, 𝜀
1
)

mod(𝜎
2
𝑥
𝑚+1

, 𝜀
2
)

...
mod(𝜎

𝑙
𝑥
𝑛
, 𝜀
𝑙
)

0

...
0

)
)
)
)
)

)𝑛×1

,

(12)

where 𝑔(𝜎𝑥, 𝜀) is a uniformly bounded nonlinear func-
tion, such as periodic or modular functions. Here, select
𝑔(𝜎𝑥, 𝜀) as a modular function mod(⋅). In addition, param-
eters 𝜎 = [𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑙
, 0, . . . , 0] are controller gain and 𝜀 =

[𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑙
, 0, . . . , 0] are controller supremum. 𝑙 is the num-

ber of feedback control variables 𝑥
𝑚
(𝑘), 𝑥
𝑚+1

(𝑘), . . . , 𝑥
𝑛
(𝑘).

𝑚 is the subscript value of the first feedback control variable
𝑥
𝑚
(𝑘).
From (10)–(12), one obtains the controlled system, given

by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑔 (𝜎𝑥 (𝑘) , 𝜀) . (13)

The corresponding component form of (13) is given by

𝑥
1
(𝑘 + 1) = 𝑎

11
𝑥
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

1𝑚−1
𝑥
𝑚−1

(𝑘) + 𝑎
1𝑚
𝑥
𝑚
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
1𝑛
𝑥
𝑛
(𝑘) + 𝑔

1
(𝜎
1
𝑥
𝑚
(𝑘) , 𝜀
1
)

...

𝑥
𝑙
(𝑘 + 1) = 𝑎

𝑙1
𝑥
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑙𝑚−1
𝑥
𝑚−1

(𝑘) + 𝑎
𝑙𝑚
𝑥
𝑚
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
𝑙𝑛
𝑥
𝑛
(𝑘) + 𝑔

𝑙
(𝜎
𝑙
𝑥
𝑛
(𝑘) , 𝜀
𝑙
)

...

𝑥
𝑚
(𝑘 + 1) = 𝑎

𝑚1
𝑥
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑚𝑚−1
𝑥
𝑚−1

(𝑘)

+ 𝑎
𝑚𝑚

𝑥
𝑚
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑚𝑛
𝑥
𝑛
(𝑘)

...
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𝑥
𝑛
(𝑘 + 1) = 𝑎

𝑛1
𝑥
1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑛𝑚−1
𝑥
𝑚−1

(𝑘)

+ 𝑎
𝑛𝑚
𝑥
𝑚
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
𝑥
𝑛
(𝑘) .

(14)

Theorem 1. Consider the controlled system (14). If the follow-
ing two conditions are satisfied, then the controlled system (14)
is chaotic.

(i) n characteristic roots of 𝐴 are located inside the unit
circle, making the corresponding nominal system (10)
asymptotically stable.

(ii) The controller (12) is uniformly bounded. By selecting
parameters 𝜎 and 𝜀, the controlled systemmatrix𝐴

𝐶
of

system (14) has at least one characteristic root located
outside the unit circle, where 𝐴

𝐶
is given by

𝐴
𝐶
=

(
(
(
(
(
(
(
(
(
(
(

(

𝑎
11

⋅ ⋅ ⋅ 𝑎
1,𝑚−1

𝑎
1,𝑚

+

𝜕𝑔
1
(𝜎
1
𝑥
𝑚
, 𝜀
1
)

𝜕𝑥
𝑚

⋅ ⋅ ⋅ 𝑎
1𝑛

... d
...

... d
...

𝑎
𝑙,1

⋅ ⋅ ⋅ 𝑎
𝑙,𝑚−1

𝑎
𝑙,𝑚

⋅ ⋅ ⋅ 𝑎
𝑙,𝑚

+

𝜕𝑔
𝑙
(𝜎
𝑙
𝑥
𝑛
, 𝜀
𝑙
)

𝜕𝑥
𝑛

... d
...

... d
...

𝑎
𝑚,1

⋅ ⋅ ⋅ 𝑎
𝑚,𝑚−1

𝑎
𝑚,𝑚

⋅ ⋅ ⋅ 𝑎
𝑚,𝑛

... d
...

... d
...

𝑎
𝑛,1

⋅ ⋅ ⋅ 𝑎
𝑛,𝑚−1

𝑎
𝑛,𝑚

⋅ ⋅ ⋅ 𝑎
𝑛,𝑛

)
)
)
)
)
)
)
)
)
)
)

)

. (15)

Proof. In the many features of chaos, two basic characteris-
tics, namely, being globally bounded while having a positive
Lyapunov exponent, are widely used as criteria for chaos [4].
Consider the solution of (14):

𝑥 (𝑘) = 𝐴
𝑘
𝑥
0
+

𝑘−1

∑

𝑗=0

𝐴
𝑘−𝑗−1

𝑔 (𝜎𝑥 (𝑗) , 𝜀) . (16)

It follows from conditions (i) and (ii) that, since ‖𝐴‖ < 1 and
sup
0≤𝑘<∞

‖𝑔(𝜎𝑥, 𝜀)‖ ≤ 𝜀
𝑗
< ∞, one has

sup
0≤𝑘<∞

‖𝑥 (𝑘)‖ ≤ sup
0≤𝑘<∞

‖𝐴‖
𝑘
⋅




𝑥
0





+ sup
0≤𝑘<∞

𝑘−1

∑

𝑗=0

‖𝐴‖
𝑘−𝑗−1

⋅ 𝜀
𝑗

≤ sup
0≤𝑘<∞





𝑥
0





+ sup
0≤𝑘<∞

𝜀
𝑗
⋅

𝑘−1

∑

𝑗=0

‖𝐴‖
𝑘−𝑗−1

,

(17)

where∑𝑘−1
𝑗=0

‖𝐴‖
𝑘−𝑗−1

= ‖𝐴‖
0
+ ‖𝐴‖

1
+ ‖𝐴‖

2
+ ⋅ ⋅ ⋅ + ‖𝐴‖

𝑘−1 is a
geometric series with common ratio ‖𝐴‖. Hence, one gets

𝑘−1

∑

𝑗=0

‖𝐴‖
𝑘−𝑗−1

=

‖𝐴‖
0
− ‖𝐴‖ ⋅ ‖𝐴‖

𝑘−1

1 − ‖𝐴‖

=

1 − ‖𝐴‖
𝑘

1 − ‖𝐴‖

. (18)

Substituting (18) into (17), one gets

sup
0≤𝑘<∞

‖𝑥 (𝑘)‖ ≤ sup
0≤𝑘<∞





𝑥
0





+ sup
0≤𝑘<∞

𝜀
𝑗
⋅

1 − ‖𝐴‖
𝑘

1 − ‖𝐴‖

≤ sup
0≤𝑘<∞





𝑥
0





+ sup
0≤𝑘<∞

𝜀
𝑗

1 − ‖𝐴‖

< ∞.

(19)

Therefore, 𝑥(𝑘) is globally bounded.

According to the Lyapunov exponent formula for
discrete-time chaotic systems,

𝜆
𝑖
(𝑥
0
) = lim
𝑚→∞

𝜆
𝑚𝑖
(𝑥
0
)

= lim
𝑚→∞

1

2𝑚

ln [𝜇
𝑖
(𝑇
𝑇

𝑚
𝑇
𝑚
)] (𝑖 = 1, 2, . . . , 𝑛) ,

(20)

where 𝑖 = 1, 2, . . . , 𝑛. When 𝐴
𝐶
has at least one characteristic

root located outside the unit circle, system (14) generates at
least one positive Lyapunov exponent.

Therefore, the controlled system (14) is chaotic since it
is globally bounded and has at least one positive Lyapunov
exponent.

3. A Typical Example
Consider a 7D nominal matrix 𝐵 in the form of

𝐵 =

(
(
(

(

𝛾
1

𝜔
11

0 0 0 0 0

𝜔
12

𝛾
1

0 0 0 0 0

0 0 𝛾
2

𝜔
21

0 0 0

0 0 𝜔
22

𝛾
2

0 0 0

0 0 0 0 𝛾
3

𝜔
31

0

0 0 0 0 𝜔
32

𝛾
3

0

−1 −1 −1 −1 −1 −1 𝛾
7

)
)
)

)7×7

, (21)

where 𝛾
1
= 0.31, 𝜔

11
= 𝜔
12

= 0.23, 𝛾
2
= 0.13, 𝜔

21
= 𝜔
22

=

0.21, 𝛾
3
= −0.17, 𝜔

31
= 𝜔
32
= 0.33, and 𝛾

7
= −0.19.

Suppose that the similarity transformation is

𝑃 = (

0 1 ⋅ ⋅ ⋅ 1 1

1 0 ⋅ ⋅ ⋅ 1 1

...
... d

...
...

1 1 ⋅ ⋅ ⋅ 0 1

1 1 ⋅ ⋅ ⋅ 1 0

)

7×7

. (22)
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According to 𝐴 = 𝑃𝐵𝑃
−1, one gets the converted nominal

matrix, given by

𝐴 =

(
(
(

(

0.1983 −0.3417 0.0483 −0.3717 0.4683 −0.1917 −0.8417

−0.2650 −0.1850 0.1250 −0.2950 0.5450 −0.1150 −0.7650

−0.0783 −0.5383 0.2117 −0.1283 0.5017 −0.1583 −0.8083

−0.0083 −0.4683 −0.0583 −0.1383 0.5717 −0.0883 −0.7383

−0.0483 −0.5083 0.1117 −0.3083 0.3617 0.2017 −0.7783

0.0617 −0.3983 0.2217 −0.1983 0.3117 −0.1883 −0.6683

0.0100 −0.4500 0.1700 −0.2500 0.5900 −0.0700 0.0900

)
)
)

)7×7

. (23)

By selecting three feedback state variables as 𝑥
5
(𝑘), 𝑥
6
(𝑘),

and 𝑥
7
(𝑘), the controller is obtained by

𝑔 (𝜎𝑥, 𝜀) =

(
(
(

(

𝑔
1
(𝜎
1
𝑥
5
, 𝜀
1
)

𝑔
2
(𝜎
2
𝑥
6
, 𝜀
2
)

𝑔
3
(𝜎
3
𝑥
7
, 𝜀
3
)

0

0

0

0

)
)
)

)7×1

=

(
(
(

(

mod(𝜎
1
𝑥
5
, 𝜀
1
)

mod(𝜎
2
𝑥
6
, 𝜀
2
)

mod(𝜎
3
𝑥
7
, 𝜀
3
)

0

0

0

0

)
)
)

)7×1

, (24)

where parameters 𝜀
1
= 1.6×10

7, 𝜎
1
= 2.3×10

7, 𝜀
2
= 3.3×10

7,
and 𝜎

2
= 4.2 × 10

7, 𝜀
3
= 6.7 × 10

7, 𝜎
3
= 5.0 × 10

7.
According to (23) with (24), one gets the controlled

system, given by

(
(
(

(

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

𝑥
3
(𝑘 + 1)

𝑥
4
(𝑘 + 1)

𝑥
5
(𝑘 + 1)

𝑥
6
(𝑘 + 1)

𝑥
7
(𝑘 + 1)

)
)
)

)

=

(
(
(

(

0.1983 −0.3417 0.0483 −0.3717 0.4683 −0.1917 −0.8417

−0.2650 −0.1850 0.1250 −0.2950 0.5450 −0.1150 −0.7650

−0.0783 −0.5383 0.2117 −0.1283 0.5017 −0.1583 −0.8083

−0.0083 −0.4683 −0.0583 −0.1383 0.5717 −0.0883 −0.7383

−0.0483 −0.5083 0.1117 −0.3083 0.3617 0.2017 −0.7783

0.0617 −0.3983 0.2217 −0.1983 0.3117 −0.1883 −0.6683

0.0100 −0.4500 0.1700 −0.2500 0.5900 −0.0700 0.0900

)
)
)

)

×

(
(
(

(

𝑥
1
(𝑘)

𝑥
2
(𝑘)

𝑥
3
(𝑘)

𝑥
4
(𝑘)

𝑥
5
(𝑘)

𝑥
6
(𝑘)

𝑥
7
(𝑘)

)
)
)

)

+

(
(
(
(

(

mod (𝜎
1
𝑥
5
(𝑘) , 𝜀
1
)

mod (𝜎
2
𝑥
6
(𝑘) , 𝜀
2
)

mod (𝜎
3
𝑥
7
(𝑘) , 𝜀
3
)

0

0

0

0

)
)
)
)

)

,

(25)

where 𝐴
𝐶
is in the form of

𝐴
𝐶
=

(
(
(

(

0.1983 −0.3417 0.0483 −0.3717 0.4683 + 𝜀
1
𝜎
1

−0.1917 −0.8417

−0.2650 −0.1850 0.1250 −0.2950 0.5450 −0.1150 + 𝜀
2
𝜎
2

−0.7650

−0.0783 −0.5383 0.2117 −0.1283 0.5017 −0.1583 −0.8083 + 𝜀
3
𝜎
3

−0.0083 −0.4683 −0.0583 −0.1383 0.5717 −0.0883 −0.7383

−0.0483 −0.5083 0.1117 −0.3083 0.3617 0.2017 −0.7783

0.0617 −0.3983 0.2217 −0.1983 0.3117 −0.1883 −0.6683

0.0100 −0.4500 0.1700 −0.2500 0.5900 −0.0700 0.0900

)
)
)

)

. (26)
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Figure 1: A 7D chaotic attractor.

By calculating, one gets the seven eigenvalues of 𝐵 and 𝐴 as
follows:

𝜆
1
= − 0.1900,

𝜆
2,3

= 0.3100 ± 𝑗0.2300,

𝜆
4,5

= 0.1300 ± 𝑗0.2100,

𝜆
6,7

= − 0.1700 ± 𝑗0.3300.

(27)

Therefore, all the characteristic roots of 𝐵 and 𝐴 are located
inside the unit circle.

Similarly, one gets seven eigenvalues of 𝐴
𝐶
as follows:

𝜆
1
= − 4.3,

𝜆
2,3

= 1.4208 × 10
7
± 𝑗1.4213 × 10

7
,

𝜆
4,5

= − 1.4208 × 10
7
± 𝑗1.4213 × 10

7
,

𝜆
6,7

= 2.2 ± 𝑗3.7.

(28)

Hence, in the controlled system (25), seven eigenvalues of𝐴
𝐶

are located outside the unit circle.
According to Theorem 1, the controlled system (25) is

chaotic, with a chaotic attractor as shown in Figure 1.

4. Principle of Multipath Drive-Response
Synchronization via Single Chaotic System

In this section, the principle of multipath drive-response syn-
chronization based on single chaotic system is investigated.

4.1. MultipathDrive-Response Synchronization via Single Cha-
otic System. A diagram for multipath drive-response syn-
chronization via single chaotic system is shown in Figure 2,
and its fundamental working principles are described as
follows.

(i) The 𝑙 state variables 𝑥(𝑑)
𝑚
(𝑘), . . . , 𝑥

(𝑑)

𝑛
(𝑘) generated by

the drive system are used for chaotic encryption
sequences, which encrypt pixels 𝑠

𝑚
(𝑘), . . . , 𝑠

𝑛
(𝑘) of

𝑙 images. Therefore, one can obtain the 𝑙 encrypted
signals 𝑝

𝑚
(𝑘) = 𝑥

(𝑑)

𝑚
(𝑘)+𝑠

𝑚
(𝑘), . . . , 𝑝

𝑛
(𝑘) = 𝑥

(𝑑)

𝑛
(𝑘)+

𝑠
𝑛
(𝑘).

(ii) The 𝑙 encrypted signals 𝑝
𝑚
(𝑘) = 𝑥

(𝑑)

𝑚
(𝑘) + 𝑠

𝑚
(𝑘), . . . ,

𝑝
𝑛
(𝑘) = 𝑥

(𝑑)

𝑛
(𝑘) + 𝑠

𝑛
(𝑘) are feedback to the drive

system. The related feedback principle is that, except
for jth equation, the drive system state variables
𝑥
(𝑑)

𝑗
(𝑘) of the remaining 𝑛 − 1 equations are replaced

by 𝑝
𝑗
(𝑘), where 𝑗 = 𝑚, . . . , 𝑛.

(iii) The 𝑙 encrypted signals 𝑝
𝑚
(𝑘) = 𝑥

(𝑑)

𝑚
(𝑘) + 𝑠

𝑚
(𝑘), . . . ,

𝑝
𝑛
(𝑘) = 𝑥

(𝑑)

𝑛
(𝑘) + 𝑠

𝑛
(𝑘) are transmitted through

Ethernet by using the time division multiplexing
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Ethernet
transmission

...

...

...

...
...

...

...

...

+

+

+ +

pm(k)

pn(k)x(d)n (k)

x(d)m (k)
∑

∑

sm(k)

sn(k)

x(d)1 (k + 1) = f(d)
1 (x(d)1 (k), . . . , x(d)m−1(k), pm(k), . . . , pn(k))

x(d)m−1(k + 1) = f(d)
m−1(x

(d)
1 (k), . . . , x(d)m−1(k), pm(k), . . . , pn(k))

pm(k), . . . , pn(k)

x(d)m (k + 1) = f(d)
m (x(d)1 (k), . . . , x(d)m−1(k), x

(d)
m (k), . . . , pn(k))

x(d)n (k + 1) = f(d)
n (x(d)1 (k), . . . , x(d)m−1(k), x

(d)
n (k), . . . , pn(k))

(a) The drive system

pn(k)

pm(k)

x(r)n (k)

x(r)m (k)
∑

∑

ŝm(k)

ŝn(k)

− +

− +

...

...
...

...

...

...

...

... x(r)1 (k + 1) = f(r)
1 (x(r)1 (k), . . . , x(r)m−1(k), pm(k), . . . , pn(k))

x(r)m−1(k + 1) = f(r)
m−1(x

(r)
1 (k), . . . , x(r)m−1(k), pm(k), . . . , pn(k))

pm(k), . . . , pn(k)

x(r)m (k + 1) = f(r)
m (x(r)1 (k), . . . , x(r)m−1(k), x

(r)
m (k), . . . pn(k))

x(r)n (k + 1) = f(r)
n (x(r)1 (k), . . . , x(r)m−1(k), x

(r)
n (k), . . . pn(k))

(b) The response system

Figure 2: A diagram for multipath drive-response synchronization via single chaotic system.

approach, which are used for driving the response
system. The related drive principle is that, except
for jth equation, the response system state variables
𝑥
(𝑟)

𝑗
(𝑘) of the remaining 𝑛 − 1 equations are replaced

by 𝑝
𝑗
(𝑘), where 𝑗 = 𝑚, . . . , 𝑛.

On the transmitter side, according to (14) and Figure 2,
the drive system is obtained by

𝑥
(𝑑)

1
(𝑘 + 1) = 𝑎

(𝑑)

11
𝑥
(𝑑)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

1𝑚−1
𝑥
(𝑑)

𝑚−1
(𝑘)

+ 𝑎
(𝑑)

1𝑚
𝑝
𝑚
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

1𝑛
𝑝
𝑛
(𝑘)

+ 𝑔
(𝑑)

1
(𝜎
(𝑑)

1
𝑝
𝑚
(𝑘) , 𝜀
(𝑑)

1
)

≜ 𝑓
(𝑑)

1
(𝑥
(𝑑)

1
(𝑘) , . . . , 𝑥

(𝑑)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . ,

𝑝
𝑛
(𝑘))

...

𝑥
(𝑑)

𝑙
(𝑘 + 1) = 𝑎

(𝑑)

𝑙1
𝑥
(𝑑)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

𝑙𝑚−1
𝑥
(𝑑)

𝑚−1
(𝑘)

+ 𝑎
(𝑑)

𝑙𝑚
𝑝
𝑚
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

𝑙𝑛
𝑝
𝑛
(𝑘)

+ 𝑔
(𝑑)

𝑙
(𝜎
(𝑑)

𝑙
𝑝
𝑛
(𝑘) , 𝜀
(𝑑)

𝑙
)

≜ 𝑓
(𝑑)

𝑙
(𝑥
(𝑑)

1
(𝑘) , . . . , 𝑥

(𝑑)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . ,

𝑝
𝑛
(𝑘))

...
𝑥
(𝑑)

𝑚
(𝑘 + 1) = 𝑎

(𝑑)

𝑚1
𝑥
(𝑑)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

𝑚𝑚−1
𝑥
(𝑑)

𝑚−1
(𝑘)

+ 𝑎
(𝑑)

𝑚𝑚
𝑥
(𝑑)

𝑚
(𝑘) + 𝑎

(𝑑)

𝑚𝑚+1
𝑝
𝑚+1

(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
(𝑑)

𝑚𝑛
𝑝
𝑛
(𝑘)

≜ 𝑓
(𝑑)

𝑚
(𝑥
(𝑑)

1
(𝑘) , . . . , 𝑥

(𝑑)

𝑚−1
(𝑘) , 𝑥

(𝑑)

𝑚
(𝑘) ,

𝑝
𝑚+1

(𝑘) , . . . , 𝑝
𝑛
(𝑘))

...
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𝑥
(𝑑)

𝑛
(𝑘 + 1) = 𝑎

(𝑑)

𝑛1
𝑥
(𝑑)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

𝑛𝑚−1
𝑥
(𝑑)

𝑚−1
(𝑘)

+ 𝑎
(𝑑)

𝑛𝑚
𝑝
𝑚
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑑)

𝑛𝑛−1
𝑝
𝑛−1

(𝑘)

+ 𝑎
(𝑑)

𝑛𝑛
𝑥
(𝑑)

𝑛
(𝑘)

≜ 𝑓
(𝑑)

𝑛
(𝑥
(𝑑)

1
(𝑘) , . . . , 𝑥

(𝑑)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . ,

𝑝
𝑛−1

(𝑘) , 𝑥
(𝑑)

𝑛
(𝑘)) .

(29)

Similarly, at the receiver end, the response system is described
by

𝑥
(𝑟)

1
(𝑘 + 1)

= 𝑎
(𝑟)

11
𝑥
(𝑟)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑟)

1𝑚−1
𝑥
(𝑟)

𝑚−1
(𝑘) + 𝑎

(𝑟)

1𝑚
𝑝
𝑚
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
(𝑟)

1𝑛
𝑝
𝑛
(𝑘) + 𝑔

(𝑟)

1
(𝜎
(𝑟)

1
𝑝
𝑚
(𝑘) , 𝜀
(𝑟)

1
)

≜ 𝑓
(𝑟)

1
(𝑥
(𝑟)

1
(𝑘) , . . . , 𝑥

(𝑟)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . , 𝑝

𝑛
(𝑘))

...

𝑥
(𝑟)

𝑙
(𝑘 + 1)

= 𝑎
(𝑟)

𝑙1
𝑥
(𝑟)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑟)

𝑙𝑚−1
𝑥
(𝑟)

𝑚−1
(𝑘) + 𝑎

(𝑟)

𝑙𝑚
𝑝
𝑚
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
(𝑟)

𝑙𝑛
𝑝
𝑛
(𝑘) + 𝑔

(𝑟)

𝑙
(𝜎
(𝑟)

𝑙
𝑝
𝑛
(𝑘) , 𝜀
(𝑟)

𝑙
)

≜ 𝑓
(𝑟)

𝑙
(𝑥
(𝑟)

1
(𝑘) , . . . , 𝑥

(𝑟)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . , 𝑝

𝑛
(𝑘))

...

𝑥
(𝑟)

𝑚
(𝑘 + 1)

= 𝑎
(𝑟)

𝑚1
𝑥
(𝑟)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑟)

𝑚𝑚−1
𝑥
(𝑟)

𝑚−1
(𝑘) + 𝑎

(𝑟)

𝑚𝑚
𝑥
(𝑟)

𝑚
(𝑘)

+ 𝑎
(𝑟)

𝑚𝑚+1
𝑝
𝑚+1

(𝑘) + ⋅ ⋅ ⋅ + 𝑎
(𝑟)

𝑚𝑛
𝑝
𝑛
(𝑘)

≜ 𝑓
(𝑟)

𝑚
(𝑥
(𝑟)

1
(𝑘) , . . . , 𝑥

(𝑟)

𝑚−1
(𝑘) , 𝑥

(𝑟)

𝑚
(𝑘) ,

𝑝
𝑚+1

(𝑘) , . . . , 𝑝
𝑛
(𝑘))

...

𝑥
(𝑟)

𝑛
(𝑘 + 1)

= 𝑎
(𝑟)

𝑛1
𝑥
(𝑟)

1
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

(𝑟)

𝑛𝑚−1
𝑥
(𝑟)

𝑚−1
(𝑘) + 𝑎

(𝑟)

𝑛𝑚
𝑝
𝑚
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
(𝑟)

𝑛𝑛−1
𝑝
𝑛−1

(𝑘) + 𝑎
(𝑑)

𝑛𝑛
𝑥
(𝑑)

𝑛
(𝑘)

≜ 𝑓
(𝑟)

𝑛
(𝑥
(𝑟)

1
(𝑘) , . . . , 𝑥

(𝑟)

𝑚−1
(𝑘) , 𝑝

𝑚
(𝑘) , . . . ,

𝑝
𝑛−1

(𝑘) , 𝑥
(𝑟)

𝑛
(𝑘)) .

(30)

4.2. Relationship of n, l, and m. In (29) and (30), 𝑛 is the
number of dimensions of the chaotic system, 𝑙 is the number
of feedback control variables 𝑥

𝑚
(𝑘), 𝑥
𝑚+1

(𝑘), . . . , 𝑥
𝑛
(𝑘), and

it is also the number of encrypted and decrypted images. 𝑚
is the subscript value of the first feedback control variable
𝑥
𝑚
(𝑘). In order to weigh both the number of encrypted

images and the safety performance, 𝑙 is determined by

𝑙 = (𝑛 − 𝑚) + 1 = round(𝑛
2

) . (31)

According to (31), when 𝑙 is determined, one can obtain
the subscript value 𝑚 of the first feedback control variable
𝑥
𝑚
(𝑘), given by

𝑚 = 𝑛 + 1 − 𝑙. (32)

Obviously, inequality 𝑙 ≤ 𝑚 − 1 holds.

4.3. Analysis of Multipath Drive-Response
Chaotic Synchronization

Theorem 2. Consider the drive system (29) and the response
system (30). If the following two conditions are satisfied, then
the response system can synchronize the drive system.

(i) The parameters of (29) and (30) exactly match.
(ii) Eigenvalue roots of nominal matrix 𝐵 and 𝐴 satisfy

|𝜆
2𝑚−1,2𝑚

| = |𝛾
𝑚
±𝑗√|𝜔

𝑚1
⋅ 𝜔
𝑚2
|| < 1 and |𝜆

𝑛
| = |𝛾
𝑛
| <

1.

Proof. According to (29), (30), and condition (i) from
Theorem 2, one gets the error system, given by

Δ𝑥
1
(𝑘 + 1) = 𝑎

11
Δ𝑥
1
(𝑘) + 𝑎

12
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
1𝑚−1

Δ𝑥
𝑚−1

(𝑘) ,

Δ𝑥
2
(𝑘 + 1) = 𝑎

21
Δ𝑥
1
(𝑘) + 𝑎

22
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
2𝑚−1

Δ𝑥
𝑚−1

(𝑘) ,

...

Δ𝑥
𝑚−1

(𝑘 + 1) = 𝑎
𝑚−11

Δ𝑥
1
(𝑘) + 𝑎

𝑚−12
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
𝑚−1𝑚−1

Δ𝑥
𝑚−1

(𝑘) ,

Δ𝑥
𝑚
(𝑘 + 1) = 𝑎

𝑚1
Δ𝑥
1
(𝑘) + 𝑎

𝑚2
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
𝑚𝑚−1

Δ𝑥
𝑚−1

(𝑘) + 𝑎
𝑚𝑚

Δ𝑥
𝑚
(𝑘) ,

Δ𝑥
𝑚+1

(𝑘 + 1) = 𝑎
𝑚+11

Δ𝑥
1
(𝑘) + 𝑎

𝑚+12
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
𝑚+1𝑚−1

Δ𝑥
𝑚−1

(𝑘)

+ 𝑎
𝑚+1𝑚+1

Δ𝑥
𝑚+1

(𝑘) ,

...

Δ𝑥
𝑛
(𝑘 + 1) = 𝑎

𝑛1
Δ𝑥
1
(𝑘) + 𝑎

𝑛2
Δ𝑥
2
(𝑘)

+ ⋅ ⋅ ⋅ + 𝑎
𝑛𝑚−1

Δ𝑥
𝑚−1

(𝑘) + 𝑎
𝑛𝑛
Δ𝑥
𝑛
(𝑘) ,

(33)
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Ethernet
transmission

+

+

+

−

−

−

+

+

+

+

+

+

x(d)1 (k + 1) = f(d)
1 (X(d)

1 (k))

x(d)2 (k + 1) = f(d)
2 (X(d)

2 (k))

x(d)3 (k + 1) = f(d)
3 (X(d)

3 (k))

x(d)4 (k + 1) = f(d)
4 (X(d)

4 (k))

x(d)5 (k + 1) = f(d)
5 (X(d)

5 (k))

x(d)6 (k + 1) = f(d)
6 (X(d)

6 (k))

x(d)7 (k + 1) = f(d)
7 (X(d)

7 (k))

x(r)1 (k + 1) = f(r)
1 (X(r)

1 (k))

x(r)2 (k + 1) = f(r)
2 (X(r)

2 (k))

x(r)3 (k + 1) = f(r)
3 (X(r)

3 (k))

x(r)4 (k + 1) = f(r)
4 (X(r)

4 (k))

x(r)5 (k + 1) = f(r)
5 (X(r)

5 (k))

x(r)6 (k + 1) = f(r)
6 (X(r)

6 (k))

x(r)7 (k + 1) = f(r)
7 (X(r)

7 (k))

p5(k)

p6(k)

p7(k)

p5, p6, p7

s5(k)

s6(k)

s7(k)

x(d)5 (k)

x(d)6 (k)

x(d)7 (k)

ŝ5(k)

ŝ6(k)

ŝ7(k)

x(r)5 (k)

x(r)6 (k)

x(r)7 (k)

∑

∑

∑

∑

∑

∑

Figure 3: A diagram for 7D three-path drive-response synchronization system.

where 𝑎(𝑑)
𝑖𝑗

= 𝑎
(𝑟)

𝑖𝑗
= 𝑎
𝑖𝑗
with 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝜀(𝑑)

𝑗
= 𝜀
(𝑟)

𝑗
, 𝜎(𝑑)
𝑗

= 𝜎
(𝑟)

𝑗

with 1 ≤ 𝑗 ≤ 𝑙, and Δ𝑥
𝑗
(𝑘 + 1) = Δ𝑥

(𝑑)

𝑗
(𝑘 + 1) − Δ𝑥

(𝑟)

𝑗
(𝑘 + 1)

and Δ𝑥
𝑗
(𝑘) = Δ𝑥

(𝑑)

𝑗
(𝑘) − Δ𝑥

(𝑟)

𝑗
(𝑘) with 1 ≤ 𝑗 ≤ 𝑛.

From (33), one gets

(

Δ𝑥
1
(𝑘)

Δ𝑥
2
(𝑘)

...
Δ𝑥
𝑚−1

(𝑘)

) = ([𝑎
𝑖𝑗
]
𝑚−1×𝑚−1

)

𝑘

(

Δ𝑥
1
(0)

Δ𝑥
2
(0)

...
Δ𝑥
𝑚−1

(0)

) . (34)

By taking norm on both sides of (34), one has




















(

Δ𝑥
1
(𝑘)

Δ𝑥
2
(𝑘)

...
Δ𝑥
𝑚−1

(𝑘)

)




















=




















([𝑎
𝑖𝑗
]
𝑚−1×𝑚−1

)

𝑘

(

Δ𝑥
1
(0)

Δ𝑥
2
(0)

...
Δ𝑥
𝑚−1

(0)

)




















≤






[𝑎
𝑖𝑗
]
𝑚−1×𝑚−1







𝑘

⋅




















(

Δ𝑥
1
(0)

Δ𝑥
2
(0)

...
Δ𝑥
𝑚−1

(0)

)




















.

(35)

From condition (ii) of Theorem 2, one has
‖[𝑎
𝑖𝑗
]
𝑚−1×𝑚−1

‖ < 1. Hence, the error system (35) is
asymptotically stable. Therefore,

lim
𝑘→∞





Δ𝑥
𝑖
(𝑘)





= lim
𝑘→∞






𝑥
(𝑑)

𝑖
(𝑘) − 𝑥

(𝑟)

𝑖
(𝑘)






= 0, (36)

where 𝑖 = 1, 2, . . . , 𝑚 − 1.

Furthermore, from condition (ii) of Theorem 2, |𝑎
𝑗𝑗
| <

1 (𝑗 = 𝑚,𝑚 + 1, . . . , 𝑛) hold, such that

lim
𝑘→∞

Δ𝑥
𝑗
(𝑘 + 1)

= lim
𝑘→∞

[𝑎
𝑗1
Δ𝑥
1
(𝑘) + 𝑎

𝑗2
Δ𝑥
2
(𝑘) + ⋅ ⋅ ⋅ + 𝑎

𝑗𝑚−1
Δ𝑥
𝑚−1

(𝑘)]

+ lim
𝑘→∞

𝑎
𝑗𝑗
Δ𝑥
𝑗
(𝑘) .

(37)

Substituting (36) into (37), one has

lim
𝑘→∞

Δ𝑥
𝑗
(𝑘 + 1) = lim

𝑘→∞

𝑎
𝑗𝑗
Δ𝑥
𝑗
(𝑘) → lim

𝑘→∞

Δ𝑥
𝑗
(𝑘)

= lim
𝑘→∞






𝑎
𝑗𝑗







𝑘

Δ𝑥
𝑗
(0) = 0,

(38)

where 𝑗 = 𝑚,𝑚 + 1, . . . , 𝑛.
By combining (36) with (38), one has

lim
𝑘→∞





Δ𝑥
𝑖
(𝑘)





= lim
𝑘→∞






𝑥
(𝑑)

𝑖
(𝑘) − 𝑥

(𝑟)

𝑖
(𝑘)






= 0, (39)

where 𝑖 = 1, 2, . . . , 𝑛.
From (39), it is concluded that the drive system (29)

and the response system (30) can synchronize. Nevertheless,
it should be noted that, in practical situations, only a few
iterative steps are needed for synchronization.

4.4. A 7DThree-Path Drive-Response Synchronization System.
According to Figure 2 and (29)-(30), let 𝑛 = 7. From (31)-(32),
one gets 𝑙 = round(𝑛/2) = 3 and𝑚 = 𝑛+1− 𝑙 = 5. A diagram
for 7D three-path drive-response synchronization system is
shown in Figure 3.
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From Figure 3, the 7D drive system is obtained by

𝑥
(𝑑)

1
(𝑘 + 1) = 𝑓

(𝑑)

1
(𝑋
(𝑑)

1
(𝑘)) = 𝑎

(𝑑)

11
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

12
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

13
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

14
𝑥
(𝑑)

4
(𝑘)

+ 𝑎
(𝑑)

15
𝑝
5
(𝑘) + 𝑎

(𝑑)

16
𝑝
6
(𝑘) + 𝑎

(𝑑)

17
𝑝
7
(𝑘)

+ 𝑔
(𝑑)

1
(𝜎
(𝑑)

1
𝑝
5
(𝑘) , 𝜀
(𝑑)

1
) ,

𝑥
(𝑑)

2
(𝑘 + 1) = 𝑓

(𝑑)

2
(𝑋
(𝑑)

2
(𝑘)) = 𝑎

(𝑑)

21
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

22
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

23
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

24
𝑥
(𝑑)

4
(𝑘)

+ 𝑎
(𝑑)

25
𝑝
5
(𝑘) + 𝑎

(𝑑)

26
𝑝
6
(𝑘) + 𝑎

(𝑑)

27
𝑝
7
(𝑘)

+ 𝑔
(𝑑)

2
(𝜎
(𝑑)

2
𝑝
6
(𝑘) , 𝜀
(𝑑)

2
) ,

𝑥
(𝑑)

3
(𝑘 + 1) = 𝑓

(𝑑)

3
(𝑋
(𝑑)

3
(𝑘)) = 𝑎

(𝑑)

31
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

32
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

33
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

34
𝑥
(𝑑)

4
(𝑘)

+ 𝑎
(𝑑)

35
𝑝
5
(𝑘) + 𝑎

(𝑑)

36
𝑝
6
(𝑘) + 𝑎

(𝑑)

37
𝑝
7
(𝑘)

+ 𝑔
(𝑑)

3
(𝜎
(𝑑)

3
𝑝
7
(𝑘) , 𝜀
(𝑑)

3
) ,

𝑥
(𝑑)

4
(𝑘 + 1) = 𝑓

(𝑑)

4
(𝑋
(𝑑)

4
(𝑘)) = 𝑎

(𝑑)

41
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

42
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

43
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

44
𝑥
(𝑑)

4
(𝑘) + 𝑎

(𝑑)

45
𝑝
5
(𝑘)

+ 𝑎
(𝑑)

46
𝑝
6
(𝑘) + 𝑎

(𝑑)

47
𝑝
7
(𝑘) ,

𝑥
(𝑑)

5
(𝑘 + 1) = 𝑓

(𝑑)

5
(𝑋
(𝑑)

5
(𝑘)) = 𝑎

(𝑑)

51
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

52
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

53
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

54
𝑥
(𝑑)

4
(𝑘) + 𝑎

(𝑑)

55
𝑥
(𝑑)

5
(𝑘)

+ 𝑎
(𝑑)

56
𝑝
6
(𝑘) + 𝑎

(𝑑)

57
𝑝
7
(𝑘) ,

𝑥
(𝑑)

6
(𝑘 + 1) = 𝑓

(𝑑)

6
(𝑋
(𝑑)

6
(𝑘)) = 𝑎

(𝑑)

61
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

62
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

63
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

64
𝑥
(𝑑)

4
(𝑘) + 𝑎

(𝑑)

65
𝑝
5
(𝑘)

+ 𝑎
(𝑑)

66
𝑥
(𝑑)

6
(𝑘) + 𝑎

(𝑑)

67
𝑝
7
(𝑘) ,

𝑥
(𝑑)

7
(𝑘 + 1) = 𝑓

(𝑑)

7
(𝑋
(𝑑)

7
(𝑘)) = 𝑎

(𝑑)

71
𝑥
(𝑑)

1
(𝑘) + 𝑎

(𝑑)

72
𝑥
(𝑑)

2
(𝑘)

+ 𝑎
(𝑑)

73
𝑥
(𝑑)

3
(𝑘) + 𝑎

(𝑑)

74
𝑥
(𝑑)

4
(𝑘) + 𝑎

(𝑑)

75
𝑝
5
(𝑘)

+ 𝑎
(𝑑)

76
𝑝
6
(𝑘) + 𝑎

(𝑑)

77
𝑥
(𝑑)

7
(𝑘) .

(40)

Similarly, the response system is described by

𝑥
(𝑟)

1
(𝑘 + 1) = 𝑓

(𝑟)

1
(𝑋
(𝑟)

1
(𝑘)) = 𝑎

(𝑟)

11
𝑥
(𝑟)

1
(𝑘) + 𝑎

(𝑟)

12
𝑥
(𝑟)

2
(𝑘)

+ 𝑎
(𝑟)

13
𝑥
(𝑟)

3
(𝑘) + 𝑎

(𝑟)

14
𝑥
(𝑟)

4
(𝑘) + 𝑎

(𝑟)

15
𝑝
5
(𝑘)

+ 𝑎
(𝑟)

16
𝑝
6
(𝑘) + 𝑎

(𝑟)

17
𝑝
7
(𝑘)

+ 𝑔
(𝑟)

1
(𝜎
(𝑟)

1
𝑝
5
(𝑘) , 𝜀
(𝑟)

1
) ,

𝑥
(𝑟)

2
(𝑘 + 1) = 𝑓

(𝑟)

2
(𝑋
(𝑟)

2
(𝑘)) = 𝑎

(𝑟)

21
𝑥
(𝑟)

1
(𝑘) + 𝑎

(𝑟)

22
𝑥
(𝑟)

2
(𝑘)

+ 𝑎
(𝑟)

23
𝑥
(𝑟)

3
(𝑘) + 𝑎

(𝑟)

24
𝑥
(𝑟)

4
(𝑘) + 𝑎

(𝑟)

25
𝑝
5
(𝑘)

+ 𝑎
(𝑟)

26
𝑝
6
(𝑘) + 𝑎

(𝑟)

27
𝑝
7
(𝑘)

+ 𝑔
(𝑟)

2
(𝜎
(𝑟)

2
𝑝
6
(𝑘) , 𝜀
(𝑟)

2
) ,

𝑥
(𝑟)

3
(𝑘 + 1) = 𝑓

(𝑟)

3
(𝑋
(𝑟)

3
(𝑘)) = 𝑎

(𝑟)

31
𝑥
(𝑟)

1
(𝑘) + 𝑎

(𝑟)

32
𝑥
(𝑟)

2
(𝑘)

+ 𝑎
(𝑟)

33
𝑥
(𝑟)

3
(𝑘) + 𝑎

(𝑟)

34
𝑥
(𝑟)

4
(𝑘) + 𝑎

(𝑟)

35
𝑝
5
(𝑘)

+ 𝑎
(𝑟)

36
𝑝
6
(𝑘) + 𝑎

(𝑟)

37
𝑝
7
(𝑘)

+ 𝑔
(𝑟)

3
(𝜎
(𝑟)

3
𝑝
7
(𝑘) , 𝜀
(𝑟)

3
) ,

𝑥
(𝑟)

4
(𝑘 + 1) = 𝑓

(𝑟)

4
(𝑋
(𝑟)

4
(𝑘)) = 𝑎

(𝑟)

41
𝑥
(𝑟)

1
(𝑘) + 𝑎

(𝑟)

42
𝑥
(𝑟)

2
(𝑘)

+ 𝑎
(𝑟)

43
𝑥
(𝑟)

3
(𝑘) + 𝑎

(𝑟)

44
𝑥
(𝑟)

4
(𝑘)

+ 𝑎
(𝑟)

45
𝑝
5
(𝑘) + 𝑎

(𝑟)

46
𝑝
6
(𝑘) + 𝑎

(𝑟)

47
𝑝
7
(𝑘) ,

𝑥
(𝑟)

5
(𝑘 + 1) = 𝑓

(𝑟)

5
(𝑋
(𝑟)

5
(𝑘)) = 𝑎

(𝑟)

51
𝑥
(𝑟)

1
(𝑘) + 𝑎

(𝑟)

52
𝑥
(𝑟)

2
(𝑘)

+ 𝑎
(𝑟)

53
𝑥
(𝑟)

3
(𝑘) + 𝑎

(𝑟)

54
𝑥
(𝑟)

4
(𝑘) + 𝑎

(𝑟)

55
𝑥
(𝑟)

5
(𝑘)

+ 𝑎
(𝑟)

56
𝑝
6
(𝑘) + 𝑎
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(41)

where the controller 𝑔(𝜎𝑥, 𝜀) = mod(𝜎𝑥, 𝜀) is determined by
(24), parameters 𝑎(𝑑)

𝑖𝑗
= 𝑎
(𝑟)

𝑖𝑗
= 𝑎
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 7) are given by

(23), and 𝜀(𝑑)
𝑖

= 𝜀
(𝑟)

𝑖
, 𝜎(𝑑)
𝑖

= 𝜎
(𝑟)

𝑖
(1 ≤ 𝑖 ≤ 3) are

𝜀
(𝑑)

1
= 𝜀
(𝑟)

1
= 𝜀
1
= 1.6 × 10

7
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(𝑑)

1
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(𝑟)

1
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1
= 2.3 × 10

7
,
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2
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(𝑟)

2
= 𝜀
2
= 3.3 × 10

7
, 𝜎

(𝑑)

2
= 𝜎
(𝑟)

2
= 𝜎
2
= 4.2 × 10

7
,

𝜀
(𝑑)
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3
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3
= 6.7 × 10

7
, 𝜎

(𝑑)

3
= 𝜎
(𝑟)

3
= 𝜎
3
= 5.0 × 10

7
.

(42)

According to (40) and (41), if all parameters exactly
match, the synchronization simulation results are shown in
Figure 4, from which one can see that the synchronization
can be achieved only about 10 iterative steps needed. The
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Figure 4: The synchronization simulation results.

Figure 5: FPGA embedded hardware system working platform.

receiver can decrypt three-path encrypted signals through
synchronization, given by

𝑠
5
(𝑘) = [𝑠

5
(𝑘) + 𝑥

(𝑑)

5
(𝑘)] − 𝑥

(𝑟)

5
(𝑘) = 𝑠

5
(𝑘) ,

𝑠
6
(𝑘) = [𝑠

6
(𝑘) + 𝑥

(𝑑)

6
(𝑘)] − 𝑥

(𝑟)

6
(𝑘) = 𝑠

6
(𝑘) ,

𝑠
7
(𝑘) = [𝑠

7
(𝑘) + 𝑥

(𝑑)

7
(𝑘)] − 𝑥

(𝑟)

7
(𝑘) = 𝑠

7
(𝑘) .

(43)

5. FPGA Embedded Implementation for Three
Images Encryption and Decryption

In this section, a chaotic secure communication system for
three digital color images encryption and decryption by using
a 7D discrete time chaotic system is designed, based on
FPGA embedded hardware system working platform with
XUP Virtex-II type. The corresponding system design and
hardware implementation results are then demonstrated.
Furthermore, parameters safety performance test results are
also given.

5.1. Hardware and Software Systems Design. FPGA embed-
ded hardware system working platform with XUP Virtex-II
type consists of three parts: an encrypter, a decryptor, and
the Ethernet, as shown in Figure 5. Hardware design result of
FPGA embedded system on chip is shown in Figure 6, which
consists of twelve parts: (1) two processor cores (ppc405 0
and ppc405 1); (2) a processor local bus (PLB); (3) an on-chip
peripheral bus (OPB); (4) a PLB to OPB bridge (plb2opb);
(5) a DDR synchronous dynamic random access memory
mounted on PLB (plb ddr); (6) an OPB to device control
register bus bridge (opb2dcr); (7) a joint test action group
(JTAG); (8) a clock IP (clk IP); (9) a controller mounted on
OPB (opb controller); (10) a block RAM mounted on PLB
(plb bram); (11) a video graphics array frame buffer (VGA
frame buffer); (12) 57 input and output pins (Pin). Software
system design consists of four parts: encryption algorithms,
decryption algorithms, udp protocol, and six images display
simultaneously, with their design flowcharts as shown in
Figures 7, 8, 9, and 10, respectively.

In our hardware experiments, three 160 × 120 BMP
digital color images with 24-bit per pixel are taken as typical
examples. On the transmitter side, three 32-bit chaotic stream
ciphers 𝑥(𝑑)

5
(𝑘), 𝑥(𝑑)
6
(𝑘), and 𝑥(𝑑)

7
(𝑘) generated by 7D discrete-

time chaotic system (29) are used for encrypting three 24-bit
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Figure 7: The flowchart for encryption.

pixels 𝑠
5
(𝑘), 𝑠
6
(𝑘), and 𝑠

7
(𝑘) of the corresponding three digital

color images simultaneously. For every 24-bit pixel, only 8-bit
pixel is encrypted each time since the Ethernet transmission
protocols and agreements are taken into account. Therefore,
encrypting three 160 × 120 BMP digital color images with
24-bit per pixel needs to iterate 160 × 120 × 3 times. The
three encrypted digital color images are transmitted through
Ethernet by using the time divisionmultiplexing approach.At
the receiver end, three 32-bit chaotic stream ciphers 𝑥(𝑟)

5
(𝑘),

𝑥
(𝑟)

6
(𝑘), and 𝑥

(𝑟)

7
(𝑘) generated by 7D discrete-time chaotic

system (30) are used for the corresponding decrypting
operation. When chaotic synchronization between the drive
system (29) and the response system (30) is achieved, three
encrypted digital color images can be decrypted.

5.2. Hardware Implementation Results. FPGA embedded
hardware implementation results are shown in Figures 11,
12, 13, and 14. Among 7D chaotic attractors which are in
agreement with simulation results given by Figures 1(a)–
1(f), three original and encrypted images on the transmitter
side (from top to bottom), three received encrypted and
decrypted images at the receiver end (from top to bottom)
are shown in Figures 11–13, all generated by FPGA. When
all the parameters match exactly, the receiver can decrypt
three original digital color images through synchronization,
as shown in Figure 13. But the receiver cannot decrypt three
original digital color images if the mismatched error of
one parameter between the sender and the receiver reaches
magnitude of 10−2, even though other parameters match
exactly, as shown in Figure 14.
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Figure 8: The flowchart for decryption.
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Figure 9: The flowchart for udp protocol.
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6. NIST Safety Performance Test Results

In our NIST safety performance test for three images encryp-
tion and decryption systems (40) with (41), 10 sequences (𝑠 =
10) of 1,000,0000 bits are generated and tested. If the𝑃 value of
any test is smaller than 0.0001, the sequences are considered

Figure 11: 7D chaotic attractors.

Figure 12: Three original and encrypted images on the transmitter
side (from top to bottom).

to be not good enough and the generator is unsuitable. Table 1
shows 𝑃 value of sequences 𝑥

5
(𝑘), 𝑥
6
(𝑘), and 𝑥

7
(𝑘) based on

discrete chaotic iterations using scheme. If there are at least
two statistical values in a test, this test is marked with an
asterisk and the average value is computed to characterize
the statistics. We can see in Table 1 that the sequences have
successfully passed the NIST statistical test suite.
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Table 1: NIST test results of sequences 𝑥
5
(𝑘), 𝑥

6
(𝑘), and 𝑥

7
(𝑘).

Statistical test 𝑃 value of 𝑥
5
(𝑘) 𝑃 value of 𝑥

6
(𝑘) 𝑃 value of 𝑥

7
(𝑘)

Frequency 0.616305 0.595549 0.798139
Block frequency (𝑚 = 128) 0.834308 0.181557 0.699313
Cumulative sums 0.462694 0.597927 0.099022
Runs 0.042808 0.153763 0.494392
Long runs of ones 0.090936 0.534146 0.534146
Rank 0.289667 0.366918 0.554420
Spectral DFT 0.108791 0.637119 0.867692
Nonoverlapping templates (𝑚 = 9) 0.383827 0.455937 0.514124
Overlapping templates (𝑚 = 9) 0.236810 0.699313 0.013569
Universal 0.334538 0.455937 0.637119
Approximate entropy (𝑚 = 10) 0.616305 0.275709 0.350485
Random excursions 0.3211526 0.236810 0.455937
Random excursions variant 0.299251 0.419021 0.236810
Linear complexity (𝑀 = 500) 0.494392 0.275709 0.739918
Serial (𝑚 = 16) 0.652483 0.398909 0.441177
Success 15/15 15/15 15/15

Figure 13: Three received encrypted and decrypted images at the
receiver end (from top to bottom).

Figure 14: Three images cannot be decrypted if one parameter
mismatches.

7. Conclusions

In order to break the traditional limitations that a chaotic
system can only encrypt or decrypt one image, this paper
has developed a systematic methodology for multi-images
encryption and decryption by using single discrete time
chaotic system. A generalized design principle and the

corresponding implementation steps are also given. Based on
the FPGAembeddedhardware systemworking platformwith
XUP Virtex-II type, a chaotic secure communication system
for three digital color images encryption and decryption by
using a 7D discrete time chaotic system is designed and
implemented, with hardware experiments and NIST safety
performance tests demonstrated. Both theoretical analysis
and experimental results confirm the feasibility of this
approach.
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