167 research outputs found
Promoted Exchange Reaction between Alkanethiolate Self-Assembled Monolayers and an Azide-Bearing Substituent
The possibility of ultraviolet (UV) light promoted exchange reaction (UVPER) between the primary alkanethiolate (AT) self-assembled monolayers (SAMs) and an azide-functionalized substituent (12-azido-1-dodecanethiol, C12N3), capable of click reaction with ethynyl-bearing species, is demonstrated. This reaction resulted in the mixed AT/C12N3 films, with the portion of C12N3 precisely controlled by selection of a suitable UV dose. As the primary matrix, either nonsubstituted or oligo(ethylene glycol) (OEG)-substituted AT SAMs were used, targeting mixed SAMs of chemical and biological significance. To demonstrate the flexibility of the approach, UV light with two different wavelengths (254 and 375 nm) was used, applied to the nonsubstituted and OEG-substituted AT SAMs, respectively. The surface density of the chemically active azide groups embedded in the nonreactive primary matrix could be varied according to the composition of the mixed SAMs, as demonstrated by the subsequent click reaction between these SAMs and several representative functional moieties bearing a suitable group for the click reaction with azide. For the OEG-AT/C12N3 films, this resulted in the preparation of templates for specific protein adsorption, comprising biotin-bearing moieties embedded in the protein-repelling OEG-AT matrix. The density of the biotin receptors was varied according to the density of the C12N3 moieties. The templates exhibited much higher affinity to the specific protein (avidin) as compared to a nonspecific one. The surface density of avidin could be varied in accordance with the density of the biotin receptors, i.e., directly controlled by the UV dose within the UVPER procedure. The entire approach was extended to lithography, relying on a commercial maskless UV lithography setup. Representative gradient patterns of specifically attached avidin in the protein-repelling OEG-AT matrix were fabricated
Systematic experimental study of quantum interference effects in anthraquinoid molecular wires
In order to translate molecular properties in molecular-electronic devices, it is necessary to create design principles that can be used to achieve better structure-function control oriented toward device fabrication. In molecular tunneling junctions, cross-conjugation tends to give rise to destructive quantum interference effects that can be tuned by changing the electronic properties of the molecules. We performed a systematic study of the tunneling charge-transport properties of a series of compounds characterized by an identical cross-conjugated anthraquinoid molecular skeleton but bearing different substituents at the 9 and 10 positions that affect the energies and localization of their frontier orbitals. We compared the experimental results across three different experimental platforms in both single-molecule and large-area junctions and found a general agreement. Combined with theoretical models, these results separate the intrinsic properties of the molecules from platform-specific effects. This work is a step towards explicit synthetic control over tunneling charge transport targeted at specific functionality in (proto-) devices
Conformation-driven quantum interference effects mediated by through-space conjugation in self-assembled monolayers
Tunnelling currents through tunnelling junctions comprising molecules with cross-conjugation are markedly lower than for their linearly conjugated analogues. This effect has been shown experimentally and theoretically to arise from destructive quantum interference, which is understood to be an intrinsic, electronic property of molecules. Here we show experimental evidence of conformation-driven interference effects by examining through-space conjugation in which π-conjugated fragments are arranged face-on or edge-on in sufficiently close proximity to interact through space. Observing these effects in the latter requires trapping molecules in a non-equilibrium conformation closely resembling the X-ray crystal structure, which we accomplish using self-assembled monolayers to construct bottom-up, large-area tunnelling junctions. In contrast, interference effects are completely absent in zero-bias simulations on the equilibrium, gas-phase conformation, establishing through-space conjugation as both of fundamental interest and as a potential tool for tuning tunnelling charge-transport in large-area, solid-state molecular-electronic devices.</p
Tripod-shaped molecules: Synthesis and immobilization on Au(1 1 1) substrates.
PolĂtica de acceso abierto tomada de: https://v2.sherpa.ac.uk/id/publication/11418We describe design and synthesis of novel tripod-shaped molecules that are potentially capable of monomolecular assembly on noble metal substrates, maintaining, due to their rigidity and specific geometry, the orientation of the functional arm in a perpendicular fashion with respect to the substrate. Using a combination of X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and atomic force microscopy, the ability of these molecules to form well-defined and densely packed self-assembled monolayers (SAMs) on Au(111) was demonstrated, with the majority of the molecules adsorbed in the predefined tripodal geometry, relying on the thiolate-gold anchors. The functionality of the respective monomolecular templates was proved by click reaction between the terminal alkyne groups of the monolayers and complementary azide-substituted substituent (theophylline), which served potentially as specific protein receptor. The resulting theophylline-terminated films were successfully tested for specific protein adsorption, verifying the validity and reliability of the presented concept, in terms of the tripod design and its "activation" by the click reaction
Lateral dipole moments induced by all-cis-pentafluorocyclohexyl groups cause unanticipated effects in self-assembled monolayers
C. F. and A. T. thank the Fonds der Chemischen Industrie (FCI) for providing a PhD stipend. S. D., Y. B. L. and M. Z. thank the Helmholtz Zentrum Berlin for the allocation of synchrotron radiation beamtime at BESSY II and financial support. Y. L. thanks the China Scholarship Council (CSC) for financial support.All-cis-hexafluoro- and all-cis-pentafluoro-cyclohexane (PFCH) derivatives are new kinds of materials, the structures and properties of which are dominated by the highly dipolar Janus-face motif. Here, we report on the effects of integrating the PFCH groups into self-assembled monolayers (SAMs) of alkanethiolates on Au(111). Monolayers with an odd (eleven) and even (twelve) number of methylene groups were characterized in detail by several complementary experimental tools, supported by theoretical calculations. Surprisingly, all the data show a high similarity of both kinds of monolayers, nearly lacking the typically observed odd-even effects. These new monolayers have a packing density about 1/3 lower than that of non-substituted alkanethiolate monolayers, caused by the bulkiness of the PFCH moieties. The orientations of the PFCH groups and the alkyl chains could be determined independently, suggesting a conformation similar to the one found in the solid state structure of an analogous compound. Although in the SAMs the PFCH groups are slightly tilted away from the surface normal with the axial fluorine atoms pointing downwards, most of the dipole moments of the group remain oriented parallel to the surface, which is a unique feature for a SAM system. The consequences are much lower water contact angles compared to other partly fluorinated SAMs as well as rather moderate work function values. The interaction between the terminal PFCH moieties results in an enhanced stability of the PFCH-decorated SAMs toward exchange reaction with potential molecular substituents in spite of the lower packing density of these films.Publisher PDFPeer reviewe
Resonant Inelastic Soft X-ray Scattering and X-ray Emission Spectroscopy of Solid Proline and Proline Solutions
The amino group of proline is part of a pyrrolidine ring,
which
makes it unique among the proteinogenic amino acids. To unravel its
full electronic structure, proline in solid state and aqueous solution
is investigated using X-ray emission spectroscopy and resonant inelastic
soft X-ray scattering. By controlling the pH value of the solution,
proline is studied in its cationic, zwitterionic, and anionic configurations.
The spectra are analyzed within a “building-block principle”
by comparing with suitable reference molecules, i.e., acetic acid,
cysteine, and pyrrolidine, as well as with spectral calculations based
on density functional theory. We find that the electronic structure
of the carboxyl group of proline is very similar to that of other
amino acids as well as acetic acid. In contrast, the electronic structure
of the amino group is significantly different and strongly influenced
by the ring structure of proline
- …