112 research outputs found
The language of religious affiliation: social, emotional, and cognitive differences
Religious affiliation is an important identifying characteristic for many individuals and relates to numerous life outcomes including health, well-being, policy positions, and cognitive style. Using methods from computational linguistics, we examined language from 12,815 Facebook users in the United States and United Kingdom who indicated their religious affiliation. Religious individuals used more positive emotion words (β = .278, p < .0001) and social themes such as family (β = .242, p < .0001), while nonreligious people expressed more negative emotions like anger (β = −.427, p < .0001) and categories related to cognitive processes, like tentativeness (β = −.153, p < .0001). Nonreligious individuals also used more themes related to the body (β = −.265, p < .0001) and death (β = −.247, p < .0001). The findings offer directions for future research on religious affiliation, specifically in terms of social, emotional, and cognitive differences
Microgeographic Heterogeneity of Border Malaria During Elimination Phase, Yunnan Province, China, 2011–2013
To identify township-level high-risk foci of malaria transmission in Yunnan Province, China, along the international border, we retrospectively reviewed data collected in hospitals and clinics of 58 townships in 4 counties during 2011–2013. We analyzed spatiotemporal distribution, especially hot spots of confirmed malaria, using geographic information systems and Getis-Ord Gi*(d) cluster analysis. Malaria incidence, transmission seasonality, and Plasmodium vivax:P. falciparum ratio remained almost unchanged from 2011 to 2013, but heterogeneity in distribution increased. The number of townships with confirmed malaria decreased significantly during the 3 years; incidence became increasingly concentrated within a few townships. High-/low-incidence clusters of P. falciparum shifted in location and size every year, whereas the locations of high-incidence P. vivax townships remained unchanged. All high-incidence clusters were located along the China–Myanmar border. Because of increasing heterogeneity in malaria distribution, microgeographic analysis of malaria transmission hot spots provided useful information for designing targeted malaria intervention during the elimination phase
Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci
Levels of genetic diversity of the malaria parasites and multiclonal infections are correlated with transmission intensity. In order to monitor the effect of strengthened malaria control efforts in recent years at the China-Myanmar border area, we followed the temporal dynamics of genetic diversity of three polymorphic antigenic markers msp1, msp2, and glurp in the Plasmodium falciparum populations. Despite reduced malaria prevalence in the region, parasite populations exhibited high levels of genetic diversity. Genotyping 258 clinical samples collected in four years detected a total of 22 PCR size alleles. Multiclonal infections were detected in 45.7% of the patient samples, giving a minimum multiplicity of infection of 1.41. The majority of alleles experienced significant temporal fluctuations through the years. Haplotype diversity based on the three-locus genotypes ranged from the lowest in 2009 at 0.33 to the highest in 2010 at 0.80. Sequencing of msp1 fragments from 36 random samples of five allele size groups detected 13 different sequences, revealing an additional layer of genetic complexity. This study suggests that despite reduced prevalence of malaria infections in this region, the parasite population size and transmission intensity remained high enough to allow effective genetic recombination of the parasites and continued maintenance of genetic diversity
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival
Colony-stimulating factor 1 (CSF1) and interleukin-34 (IL-34) are functional ligands of the CSF1 receptor (CSF1R) and thus are key regulators of the monocyte/macrophage lineage. We discovered that systemic administration of human recombinant CSF1 ameliorates memory deficits in a transgenic mouse model of Alzheimer’s disease. CSF1 and IL-34 strongly reduced excitotoxin-induced neuronal cell loss and gliosis in wild-type mice when administered systemically before or up to 6 h after injury. These effects were accompanied by maintenance of cAMP responsive element–binding protein (CREB) signaling in neurons rather than in microglia. Using lineage-tracing experiments, we discovered that a small number of neurons in the hippocampus and cortex express CSF1R under physiological conditions and that kainic acid–induced excitotoxic injury results in a profound increase in neuronal receptor expression. Selective deletion of CSF1R in forebrain neurons in mice exacerbated excitotoxin-induced death and neurodegeneration. We conclude that CSF1 and IL-34 provide powerful neuroprotective and survival signals in brain injury and neurodegeneration involving CSF1R expression on neurons
- …