21 research outputs found

    Miniaturized Computational Photonic Molecule Spectrometer

    Full text link
    Miniaturized spectrometry system is playing an essential role for materials analysis in the development of in-situ or portable sensing platforms across research and industry. However, there unavoidably exists trade-offs between the resolution and operation bandwidth as the device scale down. Here, we report an extreme miniaturized computational photonic molecule (PM) spectrometer utilizing the diverse spectral characteristics and mode-hybridization effect of split eigenfrequencies and super-modes, which effectively eliminates the inherent periodicity and expands operation bandwidth with ultra-high spectral resolution. These results of dynamic control of the frequency, amplitude, and phase of photons in the photonic multi-atomic systems, pave the way to the development of benchtop sensing platforms for applications previously unfeasible due to resolution-bandwidth-footprint limitations, such as in gas sensing or nanoscale biomedical sensing

    Розробка модуля отримання демографічних та клінічних даних про пацієнта для експертної системи оцінювання ризику серцево – судинних захворювань у хворих на артеріальну гіпертензію

    Get PDF
    Signaling data from the cellular networks can provide a means of analyzing the efficiency of a deployed transportation system and assisting in the formulation of transport models to predict its future use. An approach based on this type of data can be especially appealing for transportation systems that need massive expansions, since it has the added benefit that no specialized equipment or installations are required, hence it can be very cost efficient. Within this context in this paper we describe how such obtained data can be processed and used in order to act as enablers for traditional transportation analysis models. We outline a layered, modular architectural framework that encompasses the entire process and present results from initial analysis of mobile phone call data in the context of mobility, transport and transport infrastructure. We finally introduce the Mobility Analytics Platform, developed by Ericsson Research, tailored for mobility analysis, and discuss techniques for analyzing transport supply and demand, and give indication on how cell phone use data can be used directly to analyze the status and use of the current transport infrastructure

    Loss of COPZ1 induces NCOA4 mediated autophagy and ferroptosis in glioblastoma cell lines

    Get PDF
    Dysregulated iron metabolism is a hallmark of many cancers, including glioblastoma (GBM). However, its role in tumor progression remains unclear. Herein, we identified coatomer protein complex subunit zeta 1 (COPZ1) as a therapeutic target candidate which significantly dysregulated iron metabolism in GBM cells. Overexpression of COPZ1 was associated with increasing tumor grade and poor prognosis in glioma patients based on analysis of expression data from the publicly available database The Cancer Genome Atlas (P < 0.001). Protein levels of COPZ1 were significantly increased in GBM compared to non-neoplastic brain tissue samples in immunohistochemistry and western blot analysis. SiRNA knockdown of COPZ1 suppressed proliferation of U87MG, U251 and P3#GBM in vitro. Stable expression of a COPZ1 shRNA construct in U87MG inhibited tumor growth in vivo by ~60% relative to controls at day 21 after implantation (P < 0.001). Kaplan–Meier analysis of the survival data demonstrated that the overall survival of tumor bearing animals increased from 20.8 days (control) to 27.8 days (knockdown, P < 0.05). COPZ1 knockdown also led to the increase in nuclear receptor coactivator 4 (NCOA4), resulting in the degradation of ferritin, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. These data demonstrate that COPZ1 is a critical mediator in iron metabolism. The COPZ1/NCOA4/FTH1 axis is therefore a novel therapeutic target for the treatment of human GBM.publishedVersio

    β-Sitosterol Attenuates High Grain Diet-Induced Inflammatory Stress and Modifies Rumen Fermentation and Microbiota in Sheep

    No full text
    &beta;-sitosterol (BSS) is a plant-derived natural bioactive compound, its cellular mechanism of anti-inflammatory activity has been proven recently. Little information is available regarding the application of BSS on ruminants under high grain diet. The objective of this study was to evaluate the effects of dietary BSS supplementation on inflammatory response, ruminal fermentation characteristics and the composition of the ruminal bacterial community under high grain diet. Eight rumen-cannulated Hu sheep (59.7 &plusmn; 4.8 kg of initial body weight) were randomly assigned into a replicated 4 &times; 4 Latin square design trial. Sheep were fed a high grain diet (non-fiber carbohydrate: neutral detergent fiber = 2.03) supplemented either with 0.25 (LBS), 0.5 (MBS), 1.0 (HBS) or without (CON) g BSS /kg dry matter diet. On day 21 of each period, rumen content samples were obtained at 6 h postfeeding, and blood samples were obtained before morning feeding. The data showed that compared with control group, Dietary BSS supplementation decreased serum concentrations of tumor necrosis factor, interleukin (IL)-6, and IL-1&beta;. The ruminal pH and acetate concentration for BSS treatment were improved, while concentration of propionate, butyrate and lactate was decreased. The result of Illumina MiSeq sequencing of 16S rRNA gene revealed that BSS addition can increase the proportion of Prevotella_1, Rikenellaceae_RC9_gut_group, Prevotella_7, and Selenomonas_1, and decrease the proportion of Lachnospiraceae_NK3A20_group. These results indicated that BSS attenuates high grain diet-induced inflammatory response and modifies ruminal fermentation. In addition, the BSS dietary supplementation at the level of 0.5 g/kg is recommended in sheep

    The Effect of Replacing Wildrye Hay with Mulberry Leaves on the Growth Performance, Blood Metabolites, and Carcass Characteristics of Sheep

    No full text
    The objective of this study was to evaluate the effects of partially substituting for conventional forage, Chinese wildrye (CW), with mulberry leaves (ML) on the growth, digestion, ruminal fermentation, blood metabolites, and meat quality of sheep in a 65-day feedlot study. Thirty-two four-month-old male small-tailed Han sheep (25.15 &plusmn; 1.03 kg) were randomly assigned to one of four treatments. The dietary treatments consisted of four proportions of ML (0, 8, 24, and 32%) as a substitute for CW (designated as ML0, ML8, ML24, and ML32, respectively). Rumen digesta and blood samples were collected at day 63 of the trial. Carcass traits were assessed after slaughter at the end of performance period. The results from this study revealed no differences in average daily bodyweight gain (ADG), feed conversion ratio (FCR), and final body weight (FBW) among treatments. The apparent digestibility of dry matter (DM), organic matter (OM), and acid detergent fiber (ADF) was higher in the sheep fed with ML than in those fed CW. The ML24 treatment had a higher digestibility of crude protein (CP) and ether extract (EE). There were no differences (p = 0.13) in ruminal pH values among the treatments. However, there was more microbial protein (p &lt; 0.01) in ML24 and ML32 treatments than the ML0 treatment. Ruminal concentrations of acetate and butyrate were significantly different among treatments, although no difference in concentrations of total volatile fatty acid were found. Additionally, no differences were detected for serum parameters except blood urea nitrogen (BUN). No differences were observed for carcass weight (p = 0.62), dressing percentage (p = 0.31) or longissimus dorsi muscle (LM) area (p = 0.94) among treatments. However, intramuscular fat was higher in the ML24 treatment than in the ML0 treatment. (p &lt; 0.01). There were higher pH values of the 24-h longissimus dorsi in the ML24 treatment than in the ML0 treatment. In addition, the saturated fatty acid (SFA) content was lower (p &lt; 0.01) and the monounsaturated fatty acid (MUFA) content higher (p &lt; 0.01) in the ML24 treatment than in the ML0 treatment. In conclusion, the partially substitution of mulberry leaves for Chinese wildrye in the diet of sheep had a beneficial influence on the growth performance, blood metabolites and carcass characteristics. The inclusion of 24% (air dry basis) mulberry leaf hay in the ration of sheep is recommended based on these findings

    A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets

    No full text
    Graphene structures have never been found to play a role in accelerating fabrication of functional hydrogels. In this work, it is initially discovered that multifunctional hydrogels are fabricated via ultra-fast polymerization (∼minutes) by graphene oxide-adsorbed liquid metal nanodroplets (LMNPs@GO) vs. by conventional approaches (∼hours/days). LMNPs@GO are used to rapidly initiate and further cross-link polyacrylic acid (PAA) chains into a three-dimensional (3D) network without any extra molecular initiators, cross-linkers, heat source, and/or protective gas. The polymerization process with LMNPs@GO is extremely faster than that without GO involved (20 s vs. 4 h of prepolymer formation, and then 10 min vs. 3 days of crosslinking) for free radical polymerization of PAA hydrogels. The resulting hydrogel with 2 wt% reduced graphene oxide (rGO) exhibits 600% increase in tensile strength and 950% enhancement in conductivity, as well as excellent self-healing capabilities, in comparison with that of the pure PAA. The sensitivity studies show its great potential for the application of flexible sensors. Furthermore, the hydrogel possesses good dissolving properties, which is greatly beneficial for recyclability of the LM. This creative study not only broadens a novel application of graphene for making advanced multifunctional polymer materials, but also provides a brand-new route to realization of ultra-fast manufacturing technology that is significantly promising for industrial production in wearable devices

    Impact of Postmastectomy Radiotherapy on Locoregional Control and Disease-Free Survival in Patients with Breast Cancer Treated with Neoadjuvant Chemotherapy

    No full text
    Background. The impact of postmastectomy radiotherapy (PMRT) in patients receiving neoadjuvant chemotherapy (NAC) is unclear. The purpose of this study is to identify the patients who may benefit from PMRT. Methods. We retrospectively analysed patients with clinical stage II-III breast cancer who underwent NAC and modified radical mastectomy at our centre from 2007 to 2015. We investigated the relationship amongst locoregional recurrence rate (LRR), disease-free survival (DFS), and clinical pathological characters. Results. A total of 554 patients were analysed in this study. The median follow-up time was 65 months. Amongst the patients, 58 (10.5%) had locoregional recurrence, 138 (24.9%) had distant metastasis, and 72 (13.0%) patients died. The 5-year cumulative incidence of LRR and DFS was 9.2% and 74.2%, respectively. A total of 399 (72%) patients received PMRT and 155 (28%) did not. The 5-year LRR of the patients with PMRT (7.3% vs. 14.1%, P=0.01) decreased significantly. We found that PMRT was an independent prognostic factor of LRR and DFS. Patients with the persistent involvement of 1–3 lymph nodes (ypN1) and more than 4 positive lymph nodes (ypN2-3) had a better outcome after PMRT than those without. However, the LRR and DFS of patients with negative lymph nodes at the time of surgery (ypN0) and who received PMRT showed no significant benefits. Amongst all patients with the three molecular subtypes of breast cancer, patients with triple-negative breast cancer had the highest pathological complete response rate but the worst prognosis (P=0.001). Conclusion. Results showed that PMRT significantly reduced the LRR of patients with clinical stage II-III breast cancer after receiving NAC and mastectomy. YpN0 patients derived no local control or survival benefit after receiving PMRT, whereas those with ypN1 and ypN2-3 could obviously benefit from PMRT

    A New Oleanolic Acid Derivative against CCl4-Induced Hepatic Fibrosis in Rats

    No full text
    A novel hepatoprotective oleanolic acid derivative, 3-oxours-oleana-9(11), 12-dien-28-oic acid (Oxy-Di-OA), has been reported. In previous studies, we found that Oxy-Di-OA presented the anti-HBV (Hepatitis B Virus) activity (IC50 = 3.13 µg/mL). Remarkably, it is superior to lamivudine in the inhibition of the rebound of the viral replication rate. Furthermore, Oxy-Di-OA showed good performance of anti-HBV activity in vivo. Some studies showed that liver fibrosis may affiliate with HBV gene mutations. In addition, the anti-hepatic fibrosis activity of Oxy-Di-OA has not been studied. Therefore, we evaluated the protective effect of Oxy-Di-OA against carbon tetrachloride (CCl4)-induced liver injury in rats. Daily intraperitoneally administration of Oxy-Di-OA prevented the development of CCl4-induced liver fibrosis, which was evidenced by histological study and immunohistochemical analysis. The entire experimental protocol lasted nine weeks. Oxy-Di-OA significantly suppressed the increases of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (p &lt; 0.05). Furthermore, Oxy-Di-OA could prevent expression of transforming growth factor β1 (TGF-β1). It is worth noting that the high-dose group Oxy-Di-OA is superior to bifendate in elevating hepatic function. Compared to the model group, Oxy-Di-OA in the high-dose group and low-dose group can significantly reduce the liver and spleen indices (p &lt; 0.05). The acute toxicity test showed that LD50 and a 95% confidence interval (CIs) value of Oxy-Di-OA were 714.83 mg/kg and 639.73–798.73 mg/kg via intraperitoneal injection in mice, respectively. The LD50 value of Oxy-Di-OA exceeded 2000 mg/kg via gavage in mice. In addition, a simple and rapid high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed and validated to study the pharmacokinetic characteristics of the compound. After single-dose oral administration, time to reach peak concentration of Oxy-Di-OA (Cmax = 8.18 ± 0.66 μg/mL) was 10 ± 2.19 h; the elimination half-life and area under the concentration-time curve from t = 0 to the last time of Oxy-Di-OA was 2.19 h and 90.21 μg·h/mL, respectively
    corecore