2,732 research outputs found

    Baryon resonances from a novel fat-link fermion action

    Get PDF
    We present first results for masses of positive and negative parity excited baryons in lattice QCD using an O(a^2) improved gluon action and a Fat Link Irrelevant Clover (FLIC) fermion action in which only the irrelevant operators are constructed with fat links. The results are in agreement with earlier calculations of N^* resonances using improved actions and exhibit a clear mass splitting between the nucleon and its chiral partner, even for the Wilson fermion action. The results also indicate a splitting between the lowest J^P = 1/2^- states for the two standard nucleon interpolating fields.Comment: 5 pages, 3 figures, talk given by W.Melnitchouk at LHP 2001 workshop, Cairns, Australi

    Effect of pre-straining and bake hardening on the microstructure and mechanical properties of CMnSi trip steels

    Get PDF
    The effects of pre-straining and bake hardening on the mechanical behaviour and microstructural changes were studied in two CMnSi TRansformation-Induced Plasticity (TRIP) steels with different microstructures after intercritical annealing. The TRIP steels before and after pre-straining and bake hardening were characterised by X-ray diffraction, optical microscopy, transmission electron microscopy, three dimensional atom probe and tensile tests. Both steels exhibited discontinuous yielding behaviour and a significant strength increase with some reduction in ductility after pre-straining and bake hardening treatment. The following main microstructural changes are responsible for the observed mechanical behaviours: a decrease in the volume fraction of retained austenite, an increase in the dislocation density and the formation of cell substructure in the polygonal ferrite, higher localized dislocation density in the polygonal ferrite regions adjacent to martensite or retained austenite, and the precipitation of fine iron carbides in bainite and martensite. The mechanism for the observed yield point phenomenon in both steels after treatment was analysed.<br /

    Gain reversal studies in photorefractive waveguides

    No full text
    We report on low-loss photorefractive BaTiO3 H+ implanted waveguides exhibiting reversal of two-beam-coupling gain direction, caused by induced colour centres. The anomalous two-beam-coupling gain has been investigated as a function of the input beam ratio

    A Brief History, Status, and Perspective of Modified Oligonucleotides for Chemotherapeutic Applications

    Full text link
    The advent of rapid and efficient methods of oligonucleotide synthesis has allowed the design of modified oligonucleotides that are complementary to specific nucleotide sequences in mRNA targets. Such modified oligonucleotides can be used to disrupt the flow of genetic information from transcribed mRNAs to proteins. This antisense strategy has been used to develop therapeutic oligonucleotides against cancer and various infectious diseases in humans. This overview reports recent advances in the application of oligonucleotides as drug candidates, describes the relationship between oligonucleotide modifications and their therapeutic profiles, and provides general guidelines for enhancing oligonucleotide drug properties.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143788/1/cpnc0401.pd

    Plasticity and learning in a network of coupled phase oscillators

    Full text link
    A generalized Kuramoto model of coupled phase oscillators with slowly varying coupling matrix is studied. The dynamics of the coupling coefficients is driven by the phase difference of pairs of oscillators in such a way that the coupling strengthens for synchronized oscillators and weakens for non-synchronized pairs. The system possesses a family of stable solutions corresponding to synchronized clusters of different sizes. A particular cluster can be formed by applying external driving at a given frequency to a group of oscillators. Once established, the synchronized state is robust against noise and small variations in natural frequencies. The phase differences between oscillators within the synchronized cluster can be used for information storage and retrieval.Comment: 10 page

    Novel fat-link fermion actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using smeared links. The simulations are performed on a 16^3 X 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative O(a) improvement.Comment: 5 pages, 2 figures, talk given by J.Zanotti at LHP 2001 workshop, Cairns, Australi

    Resonant inelastic x-ray scattering (RIXS) spectra of magnesium diboride

    Full text link
    Using the tight-binding linear muffin-tin orbitals method, the soft x-ray fluorescence K-emission spectra of boron in MgB_2, excited close to the absorption edge, are estimated. In the calculations the angle of incidence between the direction of the incoming photon and the hexagonal axis of the specimen is 60 degrees and 75 degrees. Comparison with experiment is possible in the former case where good agreement is found. Furthermore, another resonant feature below the Fermi energy is predicted for the larger angle. This feature can be related to the excitations to the antibonding B pi-band in the neighbourhood of the L-H line in the Brillouin zone.Comment: 4 pages with 4 figure

    Far-infrared photo-conductivity of electrons in an array of nano-structured antidots

    Full text link
    We present far-infrared (FIR) photo-conductivity measurements for a two-dimensional electron gas in an array of nano-structured antidots. We detect, resistively and spectrally resolved, both the magnetoplasmon and the edge-magnetoplasmon modes. Temperature-dependent measurements demonstrates that both modes contribute to the photo resistance by heating the electron gas via resonant absorption of the FIR radiation. Influences of spin effect and phonon bands on the collective excitations in the antidot lattice are observed.Comment: 5 pages, 3 figure

    Nodal Quasiparticle Dispersion in Strongly Correlated d-wave Superconductors

    Full text link
    We analyze the effects of a momentum-dependent self-energy on the photoemission momentum distribution curve (MDC) lineshape, dispersion and linewidth. We illustrate this general analysis by a detailed examination of nodal quasiparticles in high Tc cuprates. We use variational results for the nodal quasiparticle weight Z (which varies rapidly with hole doping x) and the low energy Fermi velocity vFlowv_F^{low} (which is independent of x), to show that the high energy MDC dispersion vhigh=vFlow/Zv_{high} = v_F^{low}/Z, so that it is much larger than the bare (band structure) velocity and also increases strongly with underdoping. We also present arguments for why the low energy Fermi velocity and the high energy dispersion are independent of the bare band structure at small x. All of these results are in good agreement with earlier and recent photoemission data [Zhou et al, Nature 423, 398 (2003)].Comment: 4 pages, 3 eps fig
    • …
    corecore