Abstract

We analyze the effects of a momentum-dependent self-energy on the photoemission momentum distribution curve (MDC) lineshape, dispersion and linewidth. We illustrate this general analysis by a detailed examination of nodal quasiparticles in high Tc cuprates. We use variational results for the nodal quasiparticle weight Z (which varies rapidly with hole doping x) and the low energy Fermi velocity vFlowv_F^{low} (which is independent of x), to show that the high energy MDC dispersion vhigh=vFlow/Zv_{high} = v_F^{low}/Z, so that it is much larger than the bare (band structure) velocity and also increases strongly with underdoping. We also present arguments for why the low energy Fermi velocity and the high energy dispersion are independent of the bare band structure at small x. All of these results are in good agreement with earlier and recent photoemission data [Zhou et al, Nature 423, 398 (2003)].Comment: 4 pages, 3 eps fig

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020