883 research outputs found

    Mitochondrial dysfunction in advanced liver disease: Emerging Concepts.

    Get PDF
    Mitochondria are entrusted with the challenging task of providing energy through the generation of ATP, the universal cellular currency, thereby being highly flexible to different acute and chronic nutrient demands of the cell. The fact that mitochondrial diseases (genetic disorders caused by mutations in the nuclear or mitochondrial genome) manifest through a remarkable clinical variation of symptoms in affected individuals underlines the far-reaching implications of mitochondrial dysfunction. The study of mitochondrial function in genetic or non-genetic diseases therefore requires a multi-angled approach. Taking into account that the liver is among the organs richest in mitochondria, it stands to reason that in the process of unravelling the pathogenesis of liver-related diseases, researchers give special focus to characterizing mitochondrial function. However, mitochondrial dysfunction is not a uniformly defined term. It can refer to a decline in energy production, increase in reactive oxygen species and so forth. Therefore, any study on mitochondrial dysfunction first needs to define the dysfunction to be investigated. Here, we review the alterations of mitochondrial function in liver cirrhosis with emphasis on acutely decompensated liver cirrhosis and acute-on-chronic liver failure (ACLF), the latter being a form of acute decompensation characterized by a generalized state of systemic hyperinflammation/immunosuppression and high mortality rate. The studies that we discuss were either carried out in liver tissue itself of these patients, or in circulating leukocytes, whose mitochondrial alterations might reflect tissue and organ mitochondrial dysfunction. In addition, we present different methodological approaches that can be of utility to address the diverse aspects of hepatocyte and leukocyte mitochondrial function in liver disease. They include assays to measure metabolic fluxes using the comparatively novel Biolog's MitoPlates in a 96-well format as well as assessment of mitochondrial respiration by high-resolution respirometry using Oroboros' O2k-technology and Agilent Seahorse XF technology

    Glutathione S-Transferase Genotype Protects against In Utero Tobacco–linked Lung Function Deficits

    Get PDF
    We would like to thank all the previous contributors to the Perth Infant Asthma Follow up study including David Mullane, Desmond Cox, Kimberley Franks, Lou Landau, Jack Goldblatt, Sally Young, Siew-Kim Khoo, Neil Gibson, Veena Judge, Lyle Palmer, Paul O’Keefe, Jackie Arnott, Steve Stick, Peter Rye, Catherine Hayden and Sunalene Devadason.Peer reviewedPostprin

    Albumin Lipidomics Reveals Meaningful Compositional Changes in Advanced Cirrhosis and Its Potential to Promote Inflammation Resolution

    Full text link
    Albumin infusions are therapeutically used to revert hypoalbuminemia and to replace the extensively oxidized albumin molecule circulating in patients with acutely decompensated (AD) cirrhosis. Because albumin has high affinity for lipids, here we characterized the albumin lipidome in patients with AD and explored the albumin effects on the release of fatty acid (FA)-derived lipid mediators by peripheral leukocytes. Lipids and lipid mediators were measured by liquid chromatography-tandem mass spectrometry in albumin-enriched and albumin-depleted plasma fractions separated by affinity chromatography and in leukocyte incubations from 18 patients with AD and 10 healthy subjects (HS). Lipid mediators were also measured in 41 patients with AD included in an albumin therapy trial. The plasma lipidome associated with AD cirrhosis was characterized by generalized suppression of all lipid classes except FAs. In contrast to HS, albumin from patients with AD had lower content of polyunsaturated FAs (PUFAs), especially of the omega-3-PUFA docosahexaenoic acid. Consistent with this, the PUFA-derived lipid mediator landscape of albumin from patients with AD was dominated by lower content of monohydroxy FA precursors of anti-inflammatory/pro-resolving lipid mediators (i.e., 15-hydroxyeicosatetraenoic acid [15-HETE]). In addition, albumin from patients with AD was depleted in prostaglandin (PG) E2 , suggesting that this proinflammatory PG primarily travels disassociated to albumin in these patients. Incubation of leukocytes with exogenous albumin reduced PG production while inducing 15-lipoxygenase expression and 15-HETE release. Similar effects were seen under lipopolysaccharide plus N-formylmethionyl-leucyl-phenylalanine-stimulated conditions. Finally, PG levels were lower in patients with AD receiving albumin therapy, whereas 15-HETE was increased after albumin treatment compared with baseline. Conclusion: Our findings indicate that the albumin lipid composition is severely disorganized in AD cirrhosis and that administration of exogenous albumin has the potential to redirect leukocyte biosynthesis from pro-inflammatory to pro-resolving lipid mediators

    Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient

    Get PDF
    "Rotating RAdio Transients" (RRATs) are a newly discovered astronomical phenomenon, characterised by occasional brief radio bursts, with average intervals between bursts ranging from minutes to hours. The burst spacings allow identification of periodicities, which fall in the range 0.4 to 7 seconds. The RRATs thus seem to be rotating neutron stars, albeit with properties very different from the rest of the population. We here present the serendipitous detection with the Chandra X-ray Observatory of a bright point-like X-ray source coincident with one of the RRATs. We discuss the temporal and spectral properties of this X-ray emission, consider counterparts in other wavebands, and interpret these results in the context of possible explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres

    Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure.

    Get PDF
    Background & aims: Patients with acute-on-chronic liver failure (ACLF) present a systemic hyperinflammatory response associated with increased circulating levels of small-molecule metabolites. To investigate whether these alterations reflect inadequate cell energy output, we assessed mitochondrial morphology and central metabolic pathways with emphasis on the tricarboxylic acid (TCA) cycle in peripheral leukocytes from patients with acutely decompensated (AD) cirrhosis, with and without ACLF. Methods: The study included samples from patients with AD cirrhosis (108 without and 128 with ACLF) and 41 healthy individuals. Leukocyte mitochondrial ultrastructure was visualized by transmission electron microscopy and cytosolic and mitochondrial metabolic fluxes were determined by assessing NADH/FADH2 production from various substrates. Plasma GDF15 and FGF21 were determined by Luminex and acylcarnitines by LC-MS/MS. Gene expression was analyzed by RNA-sequencing and PCR-based glucose metabolism profiler array. Results: Mitochondrial ultrastructure in patients with advanced cirrhosis was distinguished by cristae rarefication and swelling. The number of mitochondria per leukocyte was higher in patients, accompanied by a reduction in their size. Increased FGF21 and C6:0- and C8:0-carnitine predicted mortality whereas GDF15 strongly correlated with a gene set signature related to leukocyte activation. Metabolic flux analyses revealed increased energy production in mononuclear leukocytes from patients with preferential involvement of extra-mitochondrial pathways, supported by upregulated expression of genes encoding enzymes of the glycolytic and pentose phosphate pathways. In patients with ACLF, mitochondrial function analysis uncovered break-points in the TCA cycle at the isocitrate dehydrogenase and succinate dehydrogenase level, which were bridged by anaplerotic reactions involving glutaminolysis and nucleoside metabolism. Conclusions: Our findings provide evidence at the cellular, organelle and biochemical levels that severe mitochondrial dysfunction governs immunometabolism in leukocytes from patients with AD cirrhosis and ACLF. Lay summary: Patients at advanced stages of liver disease have dismal prognosis due to vital organ failures and the lack of treatment options. In this study, we report that the functioning of mitochondria, which are known as the cell powerhouse, is severely impaired in leukocytes of these patients, probably as a consequence of intense inflammation. Mitochondrial dysfunction is therefore a hallmark of advanced liver disease

    Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections, xenografts and established cell lines of pancreatic cancer

    Get PDF
    BACKGROUND: Chemotherapy for pancreatic carcinoma often has severe side effects that limit its efficacy. The glucocorticoid (GC) dexamethasone (DEX) is frequently used as co-treatment to prevent side effects of chemotherapy such as nausea, for palliative purposes and to treat allergic reactions. While the potent pro-apoptotic properties and the supportive effects of GCs to tumour therapy in lymphoid cells are well studied, the impact of GCs to cytotoxic treatment of pancreatic carcinoma is unknown. METHODS: A prospective study of DEX-mediated resistance was performed using a pancreatic carcinoma xenografted to nude mice, 20 surgical resections and 10 established pancreatic carcinoma cell lines. Anti-apoptotic signaling in response to DEX was examined by Western blot analysis. RESULTS: In vitro, DEX inhibited drug-induced apoptosis and promoted the growth in all of 10 examined malignant cells. Ex vivo, DEX used in physiological concentrations significantly prevented the cytotoxic effect of gemcitabine and cisplatin in 18 of 20 freshly isolated cell lines from resected pancreatic tumours. No correlation with age, gender, histology, TNM and induction of therapy resistance by DEX co-treatment could be detected. In vivo, DEX totally prevented cytotoxicity of chemotherapy to pancreatic carcinoma cells xenografted to nude mice. Mechanistically, DEX upregulated pro-survival factors and anti-apoptotic genes in established pancreatic carcinoma cells. CONCLUSION: These data show that DEX induces therapy resistance in pancreatic carcinoma cells and raise the question whether GC-mediated protection of tumour cells from cancer therapy may be dangerous for patients

    Methods for adjusting population structure and familial relatedness in association test for collective effect of multiple rare variants on quantitative traits

    Get PDF
    Because of the low frequency of rare genetic variants in observed data, the statistical power of detecting their associations with target traits is usually low. The collapsing test of collective effect of multiple rare variants is an important and useful strategy to increase the power; in addition, family data may be enriched with causal rare variants and therefore provide extra power. However, when family data are used, both population structure and familial relatedness need to be adjusted for the possible inflation of false positives. Using a unified mixed linear model and family data, we compared six methods to detect the association between multiple rare variants and quantitative traits. Through the analysis of 200 replications of the quantitative trait Q2 from the Genetic Analysis Workshop 17 data set simulated for 697 subjects from 8 extended families, and based on quantile-quantile plots under the null and receiver operating characteristic curves, we compared the false-positive rate and power of these methods. We observed that adjusting for pedigree-based kinship gives the best control for false-positive rate, whereas adjusting for marker-based identity by state slightly outperforms in terms of power. An adjustment based on a principal components analysis slightly improves the false-positive rate and power. Taking into account type-1 error, power, and computational efficiency, we find that adjusting for pedigree-based kinship seems to be a good choice for the collective test of association between multiple rare variants and quantitative traits using family data

    Linear Streptomyces plasmids form superhelical circles through interactions between their terminal proteins

    Get PDF
    Linear chromosomes and linear plasmids of Streptomyces possess covalently bound terminal proteins (TPs) at the 5′ ends of their telomeres. These TPs are proposed to act as primers for DNA synthesis that patches the single-stranded gaps at the 3′ ends during replication. Most (‘archetypal’) Streptomyces TPs (designated Tpg) are highly conserved in size and sequence. In addition, there are a number of atypical TPs with heterologous sequences and sizes, one of which is Tpc that caps SCP1 plasmid of Streptomyces coelicolor. Interactions between the TPs on the linear Streptomyces replicons have been suggested by electrophoretic behaviors of TP-capped DNA and circular genetic maps of Streptomyces chromosomes. Using chemical cross-linking, we demonstrated intramolecular and intermolecular interactions in vivo between Tpgs, between Tpcs and between Tpg and Tpc. Interactions between the chromosomal and plasmid telomeres were also detected in vivo. The intramolecular telomere interactions produced negative superhelicity in the linear DNA, which was relaxed by topoisomerase I. Such intramolecular association between the TPs poses a post-replicational complication in the formation of a pseudo-dimeric structure that requires resolution by exchanging TPs or DNA

    GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion

    Get PDF
    Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by β-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca entry via voltage-gated Ca channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action. [Abstract copyright: © 2023. The Author(s).

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
    corecore