34 research outputs found

    其一

    Get PDF
    Here we present a formal description of Biremis panamae Barka, Witkowski et Weisenborn sp. nov., which was isolated from the marine littoral environment of the Pacific Ocean coast of Panama. The description is based on morphology (light and electron microscopy) and the rbcL, psbC and SSU sequences of one clone of this species. The new species is included in Biremis due to its morphological features; i.e. two marginal rows of foramina, chambered striae, and girdle composed of numerous punctate copulae. The new species also possesses a striated valve face which is not seen in most known representatives of marine littoral Biremis species. In this study we also present the relationship of Biremis to other taxa using morphology, DNA sequence data and observations of auxosporulation. Our results based on these three sources point to an evolutionary relationship between Biremis, Neidium and Scoliopleura. The unusual silicified incunabular caps present in them are known otherwise only in Muelleria, which is probably related to the Neidiaceae and Scoliotropidaceae. We also discuss the relationship between Biremis and the recently described Labellicula and Olifantiella

    A Critical Investigation of Certificated Industrial Wood Pellet Combustion: Influence of Process Conditions on CO/CO<sub>2</sub> Emission

    No full text
    The pollutants emission into the atmosphere is largely related to human activity and health, whereas, of many factors, domestic heating systems greatly impact the emission rate. The measures taken to reduce the emission of harmful compounds to the atmosphere are slowly starting to bring the intended effects and a downward trend in emissions of such gases as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur dioxide (SO2) is noticeable. The conducted tests allowed the determination of the combustion characteristics of individual pellet types available on the European market. During the tests, pellets were supplied to a 25 kW fixed-bed boiler with a constant mass flow of 3 kg·h−1, and the air-flow ratio was manipulated and presented in the form of the excess air coefficient λ (1.8–3.08). Pellets certificated with the ENPlus as A1 were found not meeting the requirements, mainly in the ash content, which negatively affected their combustion performance gradually and caused exceeded CO emissions up to 1000 mg·Nm−3. Pellets of declared lower classes were more beneficial for combustion in terms of emission factors

    Reverse engineering of parts with asymmetrical properties using replacement materials

    No full text
    Reverse engineering (RE) aims at the reproduction of products following a detailed examination of their construction or composition. Nowadays, industrial applications of RE were boosted by combining it with additive manufacturing. Printing of reverse-engineered elements has become an option particularly when spare parts are needed. In this paper, a case study was presented that explains how such an approach can be implemented in the case of products with asymmetric mechanical properties and using replacement materials. In this case study, a reverse engineering application was conducted on a textile machine spare part. To this end, the nearest material was selected to the actual material selection and some mechanical tests were made to validate it. Next, a replacement part was designed by following the asymmetric push-in pull-out characteristic. Finally, the finite element analysis with Additive Manufacturing was combined and validated experimentally

    Cymatosirella Dąbek, Witkowski & Sabbe gen. nov., a new marine benthic diatom genus (Bacillariophyta) belonging to the family Cymatosiraceae

    No full text
    We present a new marine benthic diatom genus Cymatosirella gen. nov. The genus belongs to the family Cymatosiraceae and has been assigned to the subfamily Extubocelluloideae on the basis of ultrastructural cell wall features. It has isovalvate cells with undulate valves and is characterized by the absence of tubular processes and the occurrence of hollow spines which are observed for the first time in the Cymatosiraceae. The new genus contains four species, two of which are transferred from the genus Cymatosira, viz. Cymatosirella capensis comb. nov. and Cymatosirella minutissima comb. nov., and two which are new to science, viz. Cymatosirella benguelensis sp. nov. and Cymatosirella taylorii sp. nov. Cymatosirella capensis is chosen as the generitype. The new genus includes a group of very small taxa inhabiting the intertidal zone of the Atlantic Ocean with three species in South Africa and one in Europe. C. capensis was originally described by Giffen from Langebaan Lagoon (a shallow marine inlet in the southern part of Saldanha Bay, Western Cape Province), on the basis of light microscopy only, and has to date only been illustrated by line drawings. C. minutissima, so far only known from the Westerschelde estuary (The Netherlands), has previously been documented in more detail using both light and electron microscopy. Here, we present the results of detailed light and electron microscopical investigations of C. capensis, both from its original type material and from recently collected samples from the type locality and neighboring littoral areas in the Western Cape Province, and of the new species C. benguelensis and C. taylorii, also from Western Cape localities. All species are compared with similar small taxa belonging to the Cymatosiraceae, subfamily Extubocelluloideae

    Diatomaceous ooze in a sedimentary core from Mariana Trench: implications for paleoceanography

    No full text
    Diatomaceous ooze sampled from near the Mariana Trench sediment surface by gravity corer (Core JL7KGC05) revealed a high sedimentary abundance of Ethmodiscus rex (Rattray, 1890) Wiseman and Hendey, 1953 fragments and tropical open ocean planktonic diatom taxa including Azpeitia nodulifera (Schmidt, 1878) Fryxell and Watkins in Fryxell, Sims and Watkins, 1986 and Alveus marinus (Grunow, 1880) Kaczmarska and Fryxell, 1996. Subsurficial sediments from the ooze are assigned a Marine Isotope Stage 2 age, approximately at the Last Glacial Maximum. The occurrence of Ethmodiscus ooze suggests massive late Pleistocene blooms in the Northwestern Pacific Ocean and provides a plausible link to paleoceanographic and paleoclimatic changes related to Antarctic Intermediate Water mass, which carried a high dissolved silica content as silicon leakage that reduced dissolution rate of diatom frustules. Northward flow of Antarctic Intermediate Water was probably related to surface current migration and southward shift of the Northwest Pacific Gyre to form oligotrophic conditions that triggered Ethmodiscus rex blooms under unusual nutrient recycling conditions within the ocean system. This bloom hypothesis may help explain differential silica dissolution during the last glacial stage

    Xenobennettella coralliensis a new monoraphid diatom genus characterized by the alveolate sternum valve with cavum, observed from coral reef habitats

    No full text
    During a survey of benthic diatoms from the coral reefs of the Indian Ocean (Scattered Islands) and Pacific Ocean (Tuamotu Archipelago), an interesting monoraphid diatom was observed and examined by light microscopy and various electron microscopy methods including Focus Ion Beam milling. Our thorough analysis revealed the similarity of this diatom to Bennettella R.W.Holmes, which we reference in the name: Xenobennettella Witkowski & Riaux-Gobin gen. nov., with Xenobennettella coralliensis Witkowski & Riaux-Gobin sp. nov. as the generitype. The type habitat for this new species is the sublittoral coral reef of Juan de Nova in the Mozambique Channel. The sternum valve of the new genus is characterized by an alveolate ultrastructure with the rim of the alveola opening along the valve margin, resembling the sternum valve of Bennettella . Internally, Xenobennettella differs from the latter by possessing a cavum (horseshoe-shaped chamber) on one side of the valve, in a central axial position. The raphe valve of Xenobennettella has small, marginal, apically elongate chambers, which are internally delineated by transapical ribs that are very similar to Bennettella . However, the raphe in the new genus is different from the latter, resembling some Cocconeis and Planothidium with internal raphe endings bent in the opposite direction, while resembling some Planothidium taxa externally by ending on the apical part of the mantle. This contrasts to Bennettella , which has a unique raphe system, with external raphe endings below the apices, a prominent axial structure and a transapically expanded central area. Likewise, the external surface of Bennettella is different from that of the new genus with a complex mantle structure and biseriate striae. In Xenobennettella , the valve mantle of the raphe valve is simple and perforated by areola. The transapical striae occur in the valve margin and the axial area is ornamented along its course with a single row of densely packed areola on both sides. The characteristics of the raphe valve and alveolate sternum valve place the new genus among the Achnanthidiaceae

    Xenobennettella coralliensis a new monoraphid diatom genus characterized by the alveolate sternum valve with cavum, observed from coral reef habitats

    No full text
    During a survey of benthic diatoms from the coral reefs of the Indian Ocean (Scattered Islands) and Pacific Ocean (Tuamotu Archipelago), an interesting monoraphid diatom was observed and examined by light microscopy and various electron microscopy methods including Focus Ion Beam milling. Our thorough analysis revealed the similarity of this diatom to Bennettella R.W.Holmes, which we reference in the name: Xenobennettella Witkowski & Riaux-Gobin gen. nov., with Xenobennettella coralliensis Witkowski & Riaux-Gobin sp. nov. as the generitype. The type habitat for this new species is the sublittoral coral reef of Juan de Nova in the Mozambique Channel. The sternum valve of the new genus is characterized by an alveolate ultrastructure with the rim of the alveola opening along the valve margin, resembling the sternum valve of Bennettella. Internally, Xenobennettella differs from the latter by possessing a cavum (horseshoe-shaped chamber) on one side of the valve, in a central axial position. The raphe valve of Xenobennettella has small, marginal, apically elongate chambers, which are internally delineated by transapical ribs that are very similar to Bennettella. However, the raphe in the new genus is different from the latter, resembling some Cocconeis and Planothidium with internal raphe endings bent in the opposite direction, while resembling some Planothidium taxa externally by ending on the apical part of the mantle. This contrasts to Bennettella, which has a unique raphe system, with external raphe endings below the apices, a prominent axial structure and a transapically expanded central area. Likewise, the external surface of Bennettella is different from that of the new genus with a complex mantle structure and biseriate striae. In Xenobennettella, the valve mantle of the raphe valve is simple and perforated by areola. The transapical striae occur in the valve margin and the axial area is ornamented along its course with a single row of densely packed areola on both sides. The characteristics of the raphe valve and alveolate sternum valve place the new genus among the Achnanthidiaceae

    Biogenic Composite Filaments Based on Polylactide and Diatomaceous Earth for 3D Printing

    No full text
    New composites containing a natural filler made of diatom shells (frustules), permitting the modification of polylactide matrix, were produced by Fused Deposition Modelling (3D printing) and were thoroughly examined. Two mesh fractions of the filler were used, one of &lt;40 µm and the other of 40−63 µm, in order to check the effect of the filler particle size on the composite properties. The composites obtained contained diatom shells in the concentrations from 0% to 5% wt. (0−27.5% vol.) and were subjected to rheological analysis. The composites obtained as filaments of 1.75 mm in diameter were used for 3D printing. The printed samples were characterized as to hydrophilic–hydrophobic, thermal and mechanical properties. The functional parameters of the printed objects, e.g., mechanical characteristics, stability on contact with water and water contact angle, were measured. The results revealed differences in the processing behavior of the samples as well as the effect of secondary granulation of the filler on the parameters of the printing and mechanical properties of the composites

    Luminescence Sensing Method for Degradation Analysis of Bioactive Glass Fibers

    No full text
    The effects of Sm3+ content on the optical properties and bioactivity of 13-93 bioactive glass were presented. Sm3+ doped glass fibers drawn from bioactive glass were analyzed in simulated body fluid (SBF) for the determination of ion release. Optical analysis of the Sm3+ ions in bioactive glass fibers was used for degradation monitoring. While the fibers were immersed in SBF solution, changes in their luminescence spectra under 405 nm laser excitation were measured continuously for 48 h. The morphology of the fibers after the immersion process was determined by SEM/EDS. It was shown that the proposed approach to the analysis of changes in Sm3+ ion luminescence is a sensitive method for the monitoring of degradation processes and the formation of hydroxycarbonate-apatite (HCA) layers on glass fiber surfaces. SEM/EDS measurements showed a significant deterioration on the surface of the fibers and the formation of HCA on 13-93_02Sm bioactive glass. The optical analysis of the time constant indicated that bioactive glass fibers doped with 2 %mol Sm3+ degrade at a rate almost five times slower than 13-93_02Sm

    Madinithidium gen. nov. (Bacillariophyceae), a new monoraphid diatom genus from the tropical marine coastal zone

    No full text
    International audienceWe studied a group of monoraphid diatom species (Bacillariophyceae, Achnanthidiaceae) found in the marine coastal environment of tropical islands of the Caribbean Sea, western Atlantic Ocean, Indian Ocean, South Pacific Ocean, the Adriatic Sea and the Black Sea. Based on light and electron microscope examination, Madinithidium was formally described as a genus new to science with the generitype defined as Madinithidium undulatum. The characteristic features of the valve structure are a strongly developed sternum and raphe sternum, transapical striae formed by a single areola (macroareolae) positioned in small depressions, elevated virgae and coaxial internal central raphe endings. Furthermore, the striae of both raphe and sternum valves are closed by finely perforated hymenes. Madinithidium and Achnanthidium species are difficult to identify correctly with light microscopy since their valves are small and finely structured. Four species recently described from the western Indian Ocean and assigned to Achnanthidium sensu lato – Achnanthidium capitatum, A. flexuistriatum, A. pseudodelicatissimum and A. scalariforme – possessed morphological features permitting their placement into Madinithidium gen. nov. The above-mentioned species were formally transferred to the new genus
    corecore