90 research outputs found

    Local energy balance, specific heats and the Oberbeck-Boussinesq approximation

    Full text link
    A thermodynamic argument is proposed in order to discuss the most appropriate form of the local energy balance equation within the Oberbeck-Boussinesq approximation. The study is devoted to establish the correct thermodynamic property to be used in order to express the relationship between the change of internal energy and the temperature change. It is noted that, if the fluid is a perfect gas, this property must be identified with the specific heat at constant volume. If the fluid is a liquid, a definitely reliable approximation identifies this thermodynamic property with the specific heat at constant pressure. No explicit pressure work term must be present in the energy balance. The reasoning is extended to the case of fluid saturated porous media.Comment: 14 pages, 2 figures, 1 table, submitted for publicatio

    Equation level matching: An extension of the method of matched asymptotic expansion for problems of wave propagation

    Full text link
    We introduce an alternative to the method of matched asymptotic expansions. In the "traditional" implementation, approximate solutions, valid in different (but overlapping) regions are matched by using "intermediate" variables. Here we propose to match at the level of the equations involved, via a "uniform expansion" whose equations enfold those of the approximations to be matched. This has the advantage that one does not need to explicitly solve the asymptotic equations to do the matching, which can be quite impossible for some problems. In addition, it allows matching to proceed in certain wave situations where the traditional approach fails because the time behaviors differ (e.g., one of the expansions does not include dissipation). On the other hand, this approach does not provide the fairly explicit approximations resulting from standard matching. In fact, this is not even its aim, which to produce the "simplest" set of equations that capture the behavior

    Mathematical Models of Incompressible Fluids as Singular Limits of Complete Fluid Systems

    Get PDF
    A rigorous justification of several well-known mathematical models of incompressible fluid flows can be given in terms of singular limits of the scaled Navier-Stokes-Fourier system, where some of the characteristic numbers become small or large enough. We discuss the problem in the framework of global-in-time solutions for both the primitive and the target system. © 2010 Springer Basel AG

    Weak and strong solutions of equations of compressible magnetohydrodynamics

    Get PDF
    International audienceThis article proposes a review of the analysis of the system of magnetohydrodynamics (MHD). First, we give an account of the modelling asumptions. Then, the results of existence of weak solutions, using the notion of renormalized solutions. Then, existence of strong solutions in the neighbourhood of equilibrium states is reviewed, in particular with the method of Kawashima and Shizuta. Finally, the special case of dimension one is highlighted : the use of Lagrangian coordinates gives a simpler system, which is solved by standard techniques
    corecore