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Abstract
In this paper, we derive the optimal boundary conditions of the Navier-Stokes fluid in
a bounded domain with a thin layer. We get the effects of the layer by investigating
the limiting δ, the thickness of the layer shrinking to zero. In the two-dimensional
case, we derive effective boundary conditions by the limit of u and p on the boundary
of the uncoated body.
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1 Introduction
We consider the mathematical problem arising from fluids by applying a thin layer of spe-
cial area to a body to be protected. The body is assumed to be a two-dimensional smooth
and bounded domain, denoted by �. The layer, denoted by �, has a thickness of δ � .
Then the whole domain � = �̄ ∪ �.

We study the Navier-Stokes fluid of the coated body

⎧
⎪⎨

⎪⎩

∂uδ

∂t + (uδ · ∇)uδ – div(A∇uδ) + ∇pδ = f (x, t) in �,
div uδ =  in �,
uδ|t= = uδ

(x), uδ|∂� = , for t > ,
()

where uδ and pδ are the velocity and the pressure of the fluid, respectively. f (x, t) is the
force term. A is a  ×  matrix, which is positive and symmetry. For simplicity, we assume
the interior body � is homogeneous. More precisely, we assume that

A(x) = I =

(
 
 

)

, ∀x ∈ �. ()

Within the coating �, we assume the tensor A takes the form

A(x)ν = σν, A(x)τ = μτ , ∀x ∈ �, ()
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Figure 1 A model of a lake or a sea near the shore.

where σ and μ are positive constants, ν = ∇d(x) is the unit outward normal to ∂� and
τ ⊥ ν is a unit tangent vector. Note that () implies

A(x) = σν ⊗ ν + μτ ⊗ τ .

This model describes an incompressible Navier-Stokes fluid in a composed domain,
which contains two different parts, a microscopic one (�) and a macroscopic one (�).
In the macroscopic part, the fluid is considered to be isotropic. The microscopic part is
anisotropic and surrounds the macroscopic part and has the thickness δ, which is small
when compared to the size of �. The real world applications may include lake or sea shore
protection and desert stabilization: to protect a shoreline from erosion, along the shoreline
in the water aquatic plants and trees may be planted, and large rocks and concrete blocks
may be placed (see Figure ); similarly, along the edge of a desert trees may be planted to
prevent the growth of the desert. If these barriers are placed periodically and parallel to
the shoreline/desert edge, then after homogenization the viscous tensor in the thin layer
� takes the form of A(x)∇uδ with A(x) satisfying ().

In the three-dimensional case of an anisotropic fluid, the viscous tensor, as a symmet-
ric  ×  matrix, has three orthogonal eigenvectors and three eigenvalues. Each of these
eigenvalues measures the impact rate of the anisotropic fluid in the corresponding eigen-
direction. To protect ∂� from eroding, it is desirable that the eigenvector corresponding
to the smallest eigenvalue is orthogonal to the boundary of the body in order to directly
confront the ambient effect. The other eigenvalues (in the tangential directions) may not
need to be small. Motivated by these considerations, in this paper, we introduce the notion
of ‘optimally aligned layer’ (a similar conception as in []), by which we mean that at every
point x ∈ �, the vector normal to ∂� at the projection of x is always an eigenvector of
the viscous tensor A(x).

The static case of such a problem was studied by Rosencrans et al. [–] and Li [] for the
heat equation on a coated body under different boundary conditions. In fluid mechanics,
Miksis and Davis [] studied a Navier-Stokes fluid flows over another one over rough and
coated surfaces. Jäger and Mikelic [] considered the boundary conditions on the contact
interface between a porous medium and a free fluid. Kohn and Vogelius [, ] studied the
effective models in a thin plate with rapidly varying thickness, he found that those models
are different according to the different scaling. Braides et al. [] got the effective results
on inhomogeneous thin layers in D and D. Ansini and Braides [] applied their effec-
tive results on oscillating boundary to thin films. Other important work on the domain
coarsening in thin layers was done by Niethammer and Otto []. Moreover, the effect
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of the strong interaction of two-dimensional, long, internal gravity waves propagating on
neighboring pycnoclines in a stratified fluid was recently studied in []. For other work,
we refer the interested reader to [–] and the references therein.

In this paper, we considered an incompressible fluid in a bounded domain with a thin
layer in D. The aim of this paper is to find the homogenized model of () and correspond-
ing optimal boundary conditions as the thickness δ tends to zero. The main difficulty we
met here is to investigate the optimal boundary conditions for the homogenized model.
To this end, we define a boundary layer equations between the macroscopic domain and
the coating. We obtained the optimal boundary conditions by using a special test function
constructed by the boundary layer solution.

The paper is organized as follows. In Section , we review some classical results and state
our main results. In Section , we give the local parameter transformation. In Section ,
we prove the main results in this paper.

2 Preliminaries and the main results
In this paper, we assume that the boundaries of ∂� and � are both smooth enough when
δ >  is sufficiently small. Then we assume that the distance function d(x), the unit normal
vector ν(x), and the unit tangent vector τ (x) are also smooth enough on �̄. We denote
the time-space domain by �T = � × (, T).

Let D(�) be the space of C∞ functions with compact support contained in �. We define
the space

V =
{

u ∈D(�), div u = 
}

,

H =
{

the closure of V in L(�)
}

,

W =
{

the closure of V in H
(�)

}
.

Throughout the paper, we make assumptions on �, A(x) and f (x) as follows:
. � is bounded, open and convex with smooth boundary (at least C);
. A(x) ∈ C(�);
. f (x) ∈ L(�T ).

Definition . A function pair {uδ , pδ} ∈ L(, T ;W)×L(, T ; H(�)) is said to be a weak
solution to () if

∫

�

uδ · η +
∫

�T

(
–uδ · ηt – uδ ⊗ uδ : ∇η + ∇η : A∇uδ

)
=

∫

�T

f · η,

for all η ∈ L(, T ;V) with η(x, t) =  at t = , T .

Lemma . Let � ⊂ R be an open bounded domain. uδ
 ∈ L(�) and f ∈ L(�T ). Then

up to a constant, () determines a unique weak solution pair {uδ , pδ} in the sense of Defini-
tion . and the following estimates hold:

(i) max
t∈[,T]

∫

�

∣
∣uδ

∣
∣ dx + 

∫

�T

∇uδ : A∇uδ dx dt ≤ C;

(ii)
∫

�T

∣
∣uδ

t
∣
∣ dx dτ + max

t∈[,T]

∫

�

∇uδ : A∇uδ dx ≤ C;



Zhao and Yao Boundary Value Problems  (2015) 2015:221 Page 4 of 17

(iii)
∫

�T

t
∣
∣uδ

t
∣
∣ dx dτ + max

t∈[,T]
t
∫

�

∇uδ : A∇uδ dx ≤ C;

(iv)
∥
∥pδ

∥
∥

L(�×(,T)) ≤ C,

where C is independent of δ.

Proof It is obvious that the tensor A(x) is positive, symmetric, and coercive. Note that ∂�

is sufficiently smooth, the energy estimates can be proved formally multiplying () by uδ

for (i), uδ
t for (ii), and tuδ

t for (iii). To prove (iv), we use the div and curl decomposition. Let
P and Q be two orthogonal operators. For all f , we have

f = P(f ) + Q(f ),

where P maps the divergence-free functions to themselves. Then we can write () in the
following way:

uδ
t + P

((
uδ · ∇)

uδ
)

– P
(
div

(
A∇uδ

))
= P(f ).

The classical result (see []) shows that uδ
t is bounded in L(, T ;W ′). By (), we see that

∇p is bounded in L(, T ; H–(�)). Finally, by using the Necćas inequality (see[], Chap-
ter , Proposition .), we see that p is bounded in L(� × (, T)) and (iv) holds.

From those a priori estimates, by using the Faedo-Galerkin method, we can establish
the existence result. �

Now, we state our main results in this paper.

Theorem . Under the hypotheses of Lemma ., supposeA(x) is given by () or () and uδ


converges strongly to u(x) in the corresponding space. We also assume that σ (δ) ≥ μ(δ) ≥ δ.
Let {uδ , pδ} be the solution pair of (). Then up to a constant, there exists a unique function
pair {u, p} such that

uδ → u weakly in L(, T ; H(�)
)
, pδ → p weakly in L(� × (, T)

)

as δ → , where {u, p} is the solution pair of the following homogenized problem:

⎧
⎪⎨

⎪⎩

ut + (u · ∇)u – �u + ∇p = f (x, t) in � × (, T),
div u =  in � × (, T),
u|t= = u(x), ∀x ∈ �,

()

together with the following homogenized boundary conditions:

. If limδ→
σ



δ

= , the boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν =  on ∂�. ()

. If limδ→
σ



δ

= α ∈ (, +∞),
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(i). if limδ→
μ

σ
= , the boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν = αν · ue on ∂�; ()

(ii). if limδ→
μ

σ
= β ∈ (, ], the boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν = α
√

βτ · ue + αν · ue on ∂�. ()

. If limδ→
σ



δ

= +∞,
(i). if limδ→

μ

σ
= , the boundary condition would be

u(x, t) · ν =  on ∂�; ()

(ii). if limδ→
μ

σ
= β ∈ (, ], the boundary condition would be

u(x, t) =  on ∂�. ()

Theorem . Under the hypotheses of Lemma ., suppose A(x) is given by () or () and
uδ

 converges strongly to u(x) in the corresponding space. We assume that δ ≤ σ (δ) ≤ μ(δ) ≤
Mσ (δ) for some constants M > . Let {uδ , pδ} be the solution pair of (). The function pair
{u, p} is defined in Theorem .. Then () still holds as δ →  together with the following
homogenized boundary conditions:

. If limδ→
μ



δ

= , the optimal boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν =  on ∂�. ()

. If limδ→
μ



δ

= α ∈ (, +∞),
(i). if limδ→

σ
μ

= , the optimal boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν =  on ∂�; ()

(ii). if limδ→
σ
μ

= β ∈ (, ], the optimal boundary condition would be

∂u
∂ν

– (u ⊗ u + pI)ν = βτ · ue + β

 ν · ue on ∂�. ()

. If limδ→
μ



δ

= +∞,
(i). if limδ→

σ
μ

= , the optimal boundary condition would be

u(x, t) · τ =  on ∂�; ()

(ii). if limδ→
σ
μ

= β ∈ (, ], the optimal boundary condition would be

u(x, t) =  on ∂�. ()
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Remark . The results in Theorem . show that boundary conditions on ∂� mainly
depend on the relationship between δ and σ . More precisely, there exists a critical in-
dex between δ and σ (δ � σ


 ). The same result was found by Mikelic [, ], where the

authors considered effective models in a domain with a thin layer between two porous
media.

Definition . A function pair {u, p} is said to be a weak solution to () if (u, p) ∈
L(, T ;W) × L(� × (, T)) and satisfies

L(u,η) = –
∫

�

u(x) · η(x, ) +
∫ T



∫

�

(
–u · ηt – uδ ⊗ uδ : ∇η + ∇u : ∇η – f · η)

= ,

for any η ∈ C∞(�̄ × (, T]) with divη = . Also, u satisfies the following weak boundary
conditions:

. ∂u
∂ν

– (u ⊗ u + pI)ν =  on ∂� if

L(u,η) = . ()

. ∂u
∂ν

– (u ⊗ u + pI)ν = αu · νe or ∂u
∂ν

– (u ⊗ u + pI)ν = α
√

βτ · ue + αν · ue on ∂�

(resp. ∂u
∂ν

– (u ⊗ u + pI)ν = βτ · ue + β

 ν · ue) if

L(u,η) = –
∫ l


αu · νeη dr or L(u,η) = –

∫ l


(α

√
βτ · ue + αu · νe)η dr

(

resp. L(u,η) = –
∫ l



(
βτ · ue + β


 ν · ue

)
η dr

)

.
()

. u =  or u · ν =  (resp. u · τ = ) on ∂� if

∫ l


(
√

βτ · ue + ν · ue) · η dr =  or

∫ l


ν · ue · η dr = 

(

resp.
∫ l


τ · ue · η dr = 

)

.
()

Theorem . Suppose ∂� is smooth enough (at least ∂� ∈ C for example), u ∈ L(�)
and f ∈ L(�T ). Then () with any of the boundary condition ()�() (resp. ()�()) has
one weak solution in the sense of Definition ..

Proof To establish the existence result, it is sufficient give the a priori estimates on differ-
ent boundary conditions.

. ∂u
∂ν

– (u ⊗ u + pI)ν =  on ∂�.
Multiplying () by u and integrating over � × (, t), we have

∫

�

|u| dx + 
∫ t



∫

�

|∇u| dx dτ =
∫

�

|u| dx + 
∫ t



∫

�

f · u dx dτ .

We obtain the a priori estimate u ∈ L∞(, T ; L(�)) ∩ L(, T ; H(�)) by the Young in-
equality and the Fredrich inequality.

. ∂u
∂ν

– (u ⊗ u + pI)ν = αu · νe on ∂�.
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Multiplying () by u and integrating over � × (, t), we have

∫

�

|u| dx + 
∫ t



∫

�

|∇u| dx dτ

≤
∫

�

|u| dx + α

∫ t



∫

∂�

|u| dS dτ + 
∫ t



∫

�

f · u dx dτ .

To obtain the a priori estimate, we only consider the second term on the right-hang side.
For each ε > , by the boundary trace imbedding theorem (see [], Chapter , (.))
and the interpolation inequality (see [], Chapter , (.)), we have

‖u‖L(∂�) ≤ K‖u‖
W


 ,(�)

≤ K
(
ε‖∇u‖L(�) + ε– 

 ‖u‖L(�)
)
,

for any  < ε < ε.
Choosing ε small enough, we obtain the same estimate as above by Gronwall’s inequality.

By the boundary condition ∂u
∂ν

– (u ⊗ u + pI)ν = α
√

βτ · ue + αν · ue, we can get the same
estimate following the steps as above.

. u =  or u · ν =  on ∂�.
The same estimate can be obtained by multiplying u in () and integrating over � ×

(, t).
With this estimate, we can construct an approximate solution by the Faedo-Galerkin

method and follow the steps in [] (Chapter , (.)) to obtain the existence result. �

3 The parameter transformation model
To investigate the boundary conditions on ∂�, it is convenient to write the system in
another coordinate system. We introduce the parameter transformation as [].

3.1 The parameter transformation
Before proving the main theorems, we introduce the parameter transformation near ∂�.
Let l = |∂�| be the arc-length of ∂�. By using the arc-length r ∈ [, l), we define the
mapping

p(r) : [, l) → ∂�,

in the contour-clockwise fashion.
For all small δ > , we also define the mapping

x = X(r, s) = p(r) + sν(r), (r, s) ∈ [, l) × (–δ, δ),

where ν(r) is the unit outer normal vector of ∂� at p(r). It is well known that X is a
diffeomorphism. We also have

� = X
(
[, l) × (, δ)

)
.

We denote by (r, s) the inverse of the mapping x = X(r, s). We denote by τ (r) the unit
tangent vector dp

dr of ∂� at p(r), and write the curvature of ∂� at p(r) as κ(r). Then we
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have the Frenet equations,

τ ′(r) = –κ(r)ν(r), ν ′(r) = κ(r)τ (r),

Xr(r, s) =
(
 + sκ(r)

)
τ (r), Xs(r, s) = ν(r).

We assume that X(r, s) is l-periodic in r. It is obvious that

dx = ( + sκ) dr ds, X(r, s) = X(x + l, s).

Near ∂�, in the (r, s) coordinate system, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

uδ
t = μ̃

+sκ(r) ( uδ
r

+sκ(r) )r + σ̃
(+sκ(r)) ( + sκ(r)uδ

s )s

+ uδ
r

+sκ (τ · uδ) + uδ
s (ν · uδ)

– τ
+sκ(r) pδ

r – νpδ
s + f (r, s, t),

τ · uδ
r + ( + sκ(r))ν · uδ

s = ,

()

complemented with the boundary condition

uδ|s=δ = , ()

where

μ̃ =

{
 in �,
μ in �,

σ̃ =

{
 in �,
σ in �.

Moreover, uδ(r, s, t) is l-periodic in r, namely,

uδ(r, s, t) = uδ(r + l, s, t).

Lemma . Let uδ
(r, s) ∈ L(�) and δ be small enough. Then

∫ T



∫ l



∫ δ



(
μ̃

∣
∣uδ

r
∣
∣ + σ̃

∣
∣uδ

s
∣
∣)ds dr dt ≤ C,

where C does not depend on δ.

Proof By Lemma .(i) and the parameter transformation, the lemma can be proved. �

3.2 Boundary layer problem
A classical way of finding boundary conditions is by using the matched asymptotic method
(see []). The main idea is to supplement the problem by an inner system in which the
independent variables are stretched out in order to capture the behavior in the neighbor-
hood of the boundary. As for our problem, this approach uses the limit rule, by which
asymptotic behavior of the outward in the neighborhood of the boundary has to be equal
to asymptotic behavior of the inner.
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Let g(r, t) ∈ C∞
 (�̄ × [, +∞)) be a solenoidal field with compact support. We extend it

to the domain � × [, +∞) via the functions ϕ and π defined by the following system:

⎧
⎪⎨

⎪⎩

–μϕrr – σϕss + μB∇π =  in R × (, δ),√
μϕr +

√
σϕs = , ∀r ∈ R

ϕ(r, , t) = g(x(r), t), ϕ(r, δ, t) = ,
∫

R×(,δ) π dr ds = ,
()

where ϕ, π are l-periodic in r and B =
(  


√

σ
μ

)
.

Suppressing the t dependence, we write

�(r, s) = ϕ

(

r, s
√

σ

μ
, t

)

, �(r, s) = π

(

r, s
√

σ

μ
, t

)

, h := δ

√
μ

σ
.

Then � and � satisfy the following system:

{
–�rr – �ss + ∇� =  in R × (, h),
�r + �s = , �(r, h) = , �(r, ) = g(r, t),

∫

R×(,δ) �dr ds = ,
()

where �, � are also l-periodic in r.
The existence result and the regularity result are given by the following lemma (see []).

Lemma . There exists a unique solution pair {�,�} ∈ C∞(R × (, h)) × C∞(R × (, h))
to () such that

� ∈ Cm(
R × (, h)

)
, � ∈ Cm(

R × (, h)
)
,

for any integer m > . Moreover, the following estimates hold:

‖�‖Cm(R×(,h)) ≤ C‖g‖Cm(R×(,h)),

‖�‖Cm(R×(,h)) ≤ C‖g‖Cm(R×(,h)).

For any  < h ≤ , we have

∣
∣
∣
∣�s(r, ) +

g(r)
h

∣
∣
∣
∣ =

∣
∣
∣
∣


h

∫ h



[
�s(r, ) – �s(r, s)

]
ds

∣
∣
∣
∣

≤ h
∥
∥�ss(r, s)

∥
∥

L∞(R×(,h))

≤ h
∥
∥g(r)

∥
∥

L∞(R),

which implies that

�s(r, ) = –

h

g(r) + O(h) =

h
(
–g(r) + O

(
h)).

It follows from σϕs(r, , t) = √
μσ�s(r, ) and the definition of h that

σϕs(r, , t) =
σ

δ

(
–g(r) + O

(
h)). ()
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4 Proof of main theorems
In this section, we put our emphasis on the proofs of Theorem . and Theorem .. They
contain two parts:

. Recover the system in �.
. Investigate the optimal boundary conditions on ∂�.

Proof of the first part in Theorem . and Theorem . By Lemma . and the standard
compactness theorem, we have uδ ⇀ u weakly in L(, T ; H(�)) and pδ ⇀ p weakly in
L(� × (, T)) as δ → . Next, we choose the test function

η(r, s, t) =

{
g in �,√

μτϕ +
√

σν

+sκ ϕ in �,
()

where ϕ = (ϕ,ϕ)τ is the solution of the boundary layer problem. Note that divx,x η(r,
s, t) =  in � ∪ � and η(r, s, t)|∂� = . Multiplying () by η(r, s, t) and integrating over
� × (, T), we have

∫ T



∫

�

f · η =
∫ T



∫

�

η · [uδ
t +

(
uδ · ∇)

uδ – div
(
A∇uδ

)
+ ∇pδ

]
. ()

To avoid the influence on ∂�, we set g =  on ∂�, then () admits a unique solution
ϕ = . Then we have

∫ T



∫

�

f · g =
∫ T



∫

�

g · [uδ
t +

(
uδ · ∇)

uδ – div
(
A∇uδ

)
+ ∇pδ

]
.

Passing to the limit δ →  and using the uniform bounds of those quantities, we recover
the system and the initial condition

ut + (u · ∇)u – �u + ∇p = f in �, u(x, ) = u. ()

At last, by using the same test function, we have

 =
∫

�

div uδg = –
∫

�

uδ · ∇g → –
∫

�

u · ∇g,

which implies

div u = . ()

The first part is then proved. �

Note that () and () are not determined because of lacking of boundary conditions.
In the following, we investigate the boundary conditions on ∂� satisfied by u.

Proof of Theorem . As in [], suppressing the t dependence, we write () in the follow-
ing way:

Iδ
 –

∫

�

f · η = Iδ
,
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where

Iδ
 = –

∫

�

ηt · uδ +
∫

�

∇η : ∇uδ –
∫

�

η · uδ
 +

∫

�

∇pδ · η +
∫

�

(
uδ · ∇)

uδ · η,

Iδ
 =

∫

�

ηt · uδ –
∫

�

∇η : A∇uδ +
∫

�

η · uδ
 –

∫

�

∇pδ · η –
∫

�

(
uδ · ∇)

uδ · η.

Denote

Bδ
 = –

∫

�

∇η : A∇uδ

= –
∫ l



∫ δ


( + sκ)

[

σηsuδ
s +

μ

( + sκ) ηruδ
r

]

= Bδ
 + Bδ

, ()

where

Bδ
 = –

∫ l



∫ δ



(
σηsuδ

s + μηruδ
r
)
, Bδ

 =
∫ l



∫ δ


sκ

(
μ

 + sκ
ηruδ

r – σηsuδ
s

)

. ()

Also

Bδ
 = –

∫ l



∫ δ



[
τpr + ν( + sk)ps

] ·
(√

μτϕ +
√

σν

 + sκ
ϕ

)

dr ds

= –
∫ l



∫ δ


(
√

μprϕ +
√

σpsϕ) dr ds

=
√

σ

∫ l


p(r, , t)ϕ(r, , t) dr. ()

Also

Bδ
 = –

∫ l



∫ δ



[

( + sκ)
√

μϕ
(
uδ

uδ
s – uδ

uδ
s
)

+
√

σϕ

 + sκ
(
uδ

uδ
r – uδ

uδ
r
)
]

dr ds

= Bδ
 + Bδ

,

Bδ
 = –

∫ l



∫ δ



[√
μϕ

(
uδ

uδ
s – uδ

uδ
s
)

+
√

σϕ
(
uδ

uδ
r – uδ

uδ
r
)]

dr ds

= Bδ
 + Bδ

.

()

It is obvious that

∣
∣Bδ


∣
∣ ≤ C

√
μ,

∣
∣Bδ


∣
∣ ≤ C

√
σ ,

Bδ
 = –

∫ l



∫ δ


sκ

[√
μϕ

(
uδ

uδ
s – uδ

uδ
s
)

–
√

σϕ

 + sκ
(
uδ

uδ
r – uδ

uδ
r
)
]

dr ds ()

= Bδ
 + Bδ

.

We also have

∣
∣Bδ


∣
∣ ≤ Cδ

√
μ,

∣
∣Bδ


∣
∣ ≤ Cδ

√
σ . ()
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In �, η satisfies

–μηrr – σηss = –μ
√

μτπr –
σ
√

μν

 + sκ
πs – μ

√
μ(τrϕ)r – μ

√
μτrϕr

–
[(

μ
√

σν

 + sκ

)

r
ϕ

]

r
–

(
μ

√
σν

 + sκ

)

r
ϕr

–
[(

σ
√

σν

 + sκ

)

s
ϕ

]

s
–

(
σ
√

σν

 + sκ

)

s
ϕs. ()

Multiplying () by η and integrating over [, l)× (, δ) and elaborated computation based
on (), and by integration by parts, we have

∫ l



∫ δ


μ|ηr| + σ |ηs|

= –σμ

∫ l


ϕ(r, , t)ϕs(r, , t) – σ 

∫ l


ϕ(r, , t)ϕs(r, , t)

+ σ
√

μσ

∫ l


π (r, , t)ϕ(r, , t) + μσ

∫ l



∫ δ


κ
∣
∣ϕ(r, , t)

∣
∣

+
∫ l



∫ δ



[

μ –
μσ

( + sκ)

]

πϕr – σ
√

μσ

∫ l



∫ δ



κ

( + sκ) πϕ

+ μ
∫ l



∫ δ


κ|ϕ| – μσ

∫ l



∫ δ



(
κ

 + sκ

)

|ϕ|

+ μσ

∫ l



∫ δ



∣
∣
∣
∣

(


 + sκ

)

r
ϕ

∣
∣
∣
∣



+ σ 
∫ l



∫ δ



∣
∣
∣
∣

(


 + sκ

)

s
ϕ

∣
∣
∣
∣



. ()

Multiplying () by uδ and integrating over [, l) × (, δ), we have

∫ l



∫ δ


(μηrr + σηss) · uδ

= σ
√

σ

∫ l


κνϕ(r, , t) · uδ(r, , t)

+ σ
√

μ

∫ l


νπ (r, , t)uδ(r, , t) + μ

√
μ

∫ l



∫ δ


τrπ · uδ

+ μ
√

μ

∫ l



∫ δ


τπ · uδ

r + σ
√

μ

∫ l



∫ δ



ν

 + sκ
π · uδ

s

– σ
√

μ

∫ l



∫ δ



νκ

( + sκ) π · uδ – μ
√

μ

∫ l



∫ δ


κνϕ · uδ

r

+ μ
√

σ

∫ l



∫ δ



(
ν

 + sκ

)

r
ϕ · uδ

r + σ
√

σ

∫ l



∫ δ



(
ν

 + sκ

)

s
ϕ · uδ

s

– μ
√

μ

∫ l



∫ δ


κ ′νϕ · uδ – μ

√
μ

∫ l



∫ δ


κτϕ · uδ

+ μ
√

σ

∫ l



∫ δ



(
ν

 + sκ

)

rr
ϕ · uδ + σ

√
σ

∫ l



∫ δ



(
ν

 + sκ

)

ss
ϕ · uδ . ()
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Integrating by parts, combining with (), (), and (), we have

Bδ
 =

∫ l



∫ δ


(μηrr + σηss) · uδ + σ

∫ l


ηs(r, , t) · uδ(r, , t) dr

= –
σ

δ

√
μ

∫ l


τg(r, t)uδ(r, , t) dr –

σ

δ

√
σ

∫ l


νg(r, t)uδ(r, , t) dr

+ σ
√

σ

∫ l


νκϕ(r, , t)uδ(r, , t) dr – σ

√
μ

∫ l


νπ (r, , t)uδ(r, , t) dr

– μ
√

μ

∫ l



∫ δ


τrrϕ · uδ – μ

√
μ

∫ l



∫ δ


τrϕ · uδ

r

– μ
√

μ

∫ l



∫ δ


τrπ · uδ – μ

√
μ

∫ l



∫ δ


τπ · uδ

r

– μ
√

σ

∫ l



∫ δ



(
ν

 + sκ

)

rr
ϕ · uδ – μ

√
σ

∫ l



∫ δ



(
ν

 + sκ

)

r
ϕ · uδ

r

– σ
√

σ

∫ l



∫ δ



(
ν

 + sκ

)

ss
ϕ · uδ – σ

√
σ

∫ l



∫ δ



(
ν

 + sκ

)

s
ϕ · uδ

s

– σ
√

μ

∫ l



∫ δ



(
ν

 + sκ

)

s
π · uδ – σ

√
μ

∫ l



∫ δ



ν

 + sκ
π · uδ

s +
σ

δ

√
μo

(
h). ()

By using the Hölder inequality and (), we have

∣
∣Bδ


∣
∣ ≤ Cδ

(∫ l



∫ δ


μ|ηr| + σ |ηs|

) 

(∫ l



∫ δ


μ

∣
∣uδ

r
∣
∣ + σ

∣
∣uδ

s
∣
∣

) 


. ()

Now we consider the limit to (), (), (), and () as δ → . We study three cases:

. If limδ→
σ



δ

= , in this case, limδ→ σ = limδ→ μ = , we have

Bδ
 = Bδ

 + Bδ
 → , Bδ

 → , Bδ
 → .

We obtain the boundary condition

∂u
∂ν

= (u ⊗ u + pI) · ν on ∂�.

. If limδ→
σ



δ

= α ∈ (, +∞), in this case, limδ→ σ = limδ→ μ = , we consider two
different subcases.

(i). If limδ→
μ

σ
= , we have

Bδ
 = Bδ

 + Bδ
 → –α

∫ l


νg(r, t)u(r, , t) dr, Bδ

 → , Bδ
 → .

Then the boundary condition is

∂u
∂ν

– (u ⊗ u + pI) · ν = αν · u(r, , t)e on ∂�.
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(ii). If limδ→
μ

σ
= β ∈ (, ], we also have Bδ

 →  and Bδ
 → ,

Bδ
 → –α

√
β

∫ l


τg(r, t)u(r, , t) dr – α

∫ l


νg(r, t)u(r, , t) dr,

which implies

∂u
∂ν

– (u ⊗ u + pI) · ν = α
√

βτ · ue + αν · ue on ∂�.

. If limδ→
σ



δ

= +∞, in this case, we also consider two different subcases.
(i). If limδ→

μ

σ
= , we have

δ

σ
√

σ
Bδ

 =
δ

σ
√

σ
Bδ

 +
δ

σ
√

σ
Bδ

.

Moreover, if σ ≥ M > ,

δ

σ
√

σ

∣
∣Bδ


∣
∣ ≤ δ

M
√

M

∫ l



∣
∣pδ(r, , t)ϕ(r, , t)

∣
∣dr → .

If  < σ < M, we have

δ

σ
√

σ

∣
∣Bδ


∣
∣ ≤ δ

σ
√

σ

√
M

∫ l



∣
∣pδ(r, , t)ϕ(r, , t)

∣
∣dr → .

The limit of Bδ
 can be derived as Bδ

 and we have δ

σ
√

σ
|Bδ

| → .
Then we obtain

∫ l


νg(r, t)uδ(r, , t) dr →

∫ l


νg(r, t)u(r, , t) dr = ,

which implies

u(r, , t) · ν =  on ∂�.

(ii). If limδ→
μ

σ
= β ∈ (, ], we have

δ

σ
√

σ
Bδ =

δ

σ
√

σ
Bδ

 +
δ

σ
√

σ
Bδ



→ –
√

β

∫ l


τg(r, t)u(r, , t) dr –

∫ l


νg(r, t)u(r, , t) dr = .

Following the steps in (i), we also have

δ

σ
√

σ
Bδ

 → ,
δ

σ
√

σ
Bδ

 → .

Then we obtain the boundary condition on u,

u(r, , t) · τ |∂� = , u(r, , t) · ν|∂� = ,
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which gives

u(r, , t) =  on ∂�.

Theorem . is proved. �

Proof of Theorem . Under the conditions in Theorem ., (), (), and () are still
satisfied. To obtain the boundary condition as δ → , we consider three cases:

. If limδ→
μ



δ

= , then limδ→
σ
√

μ

δ
= limδ→

σ
√

σ

δ
= , limδ→ σ = limδ→ μ=, we have

Bδ
 = Bδ

 + Bδ
 → , Bδ

 → , Bδ
 → .

Then we obtain the optimal boundary condition on u,

∂u
∂ν

– (u ⊗ u + pI) · ν =  on ∂�.

. If limδ→
μ



δ

= α ∈ (, +∞), then limδ→ σ = limδ→ μ = , and we consider two sub-
cases.

(i). If limδ→
σ
μ

= , then we have limδ→
σ
√

σ

δ
≤ limδ→

σ
√

μ

δ
= limδ→( μ

√
μ

δ
× σ

μ
) = ,

passing to the limit, we have

Bδ
 = Bδ

 + Bδ
 → , Bδ

 → , Bδ
 → .

Then we obtain the optimal boundary condition on u,

∂u
∂ν

– (u ⊗ u + pI) · ν =  on ∂�.

(ii). If limδ→
σ
μ

= β ∈ (, ], then we have limδ→
σ
√

σ

δ
= limδ→( μ

√
μ

δ
× σ

√
σ

μ
√

μ
) = αβ


 ,

limδ→
σ
√

μ

δ
= limδ→( μ

√
μ

δ
× σ

μ
) = αβ , passing to the limit, we have

Bδ
 → αβ

∫ l


(τ · ue) · g dr + αβ




∫ l


(ν · ue) · g dr, Bδ

 → , Bδ
 → .

Then we obtain the optimal boundary condition on u,

∂u
∂ν

– (u ⊗ u + pI) · ν = αβτ · ue + αβ

 ν · ue on ∂�.

. If limδ→
μ



δ

= +∞, then limδ→
σ
√

μ

δ
= +∞. We consider two subcases.

(i). If limδ→
σ
μ

= , then we have

δ

σ
√

μ
Bδ

 =
δ

σ
√

μ
Bδ

 +
δ

σ
√

μ
Bδ

 → –
∫ l


(τ · ue) · g dr.

Moreover, if μ ≥ a > ,

δ

σ
√

μ

∣
∣Bδ


∣
∣ ≤ δ

a
√

M
∫ l



∣
∣pδ(r, , t)ϕ(r, , t)

∣
∣dr → .
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If  < μ < M, we have

δ

σ
√

μ

∣
∣Bδ


∣
∣ ≤ δ

σ
√

μ

√
M

∫ l



∣
∣pδ(r, , t)ϕ(r, , t)

∣
∣dr → .

The limit of Bδ
 can be derived as Bδ

 and we have δ

σ
√

σ
|Bδ

| → . Then we obtain the optimal
boundary condition on u,

u · τ =  on ∂�.

(ii). If limδ→
σ
μ

= β ∈ (, ], then we have

δ

σ
√

μ
Bδ

 =
δ

σ
√

μ
Bδ

 +
δ

σ
√

μ
Bδ



→ –
∫ l


(τ · ue) · g dr –

∫ l


(
√

βν · ue) · g dr.

Following the steps in (i), we have

δ

σ
√

μ

∣
∣Bδ


∣
∣ → .

Then we obtain the optimal boundary condition on u,

τ · ue +
√

βν · ue =  on ∂�,

which implies

u =  on ∂�,

Theorem . is then proved. �

Remark . As stated in the introduction, to protect ∂� from eroding, it is desirable that
the eigenvector corresponding to the smallest eigenvalue is orthogonal to the boundary
of the body in order to directly confront the ambient effect. In our problem, it requires
δ ≤ σ ≤ μ. The optimal boundary conditions to our problem are given in Theorem ..
We must acknowledge that we need the condition δ ≤ σ ≤ μ ≤ Mσ for some constants
M >  so that we can ensure  < h ≤  as δ is small enough. If this condition does not hold,
the estimate () will not be satisfied. The case that h >  we will consider in the future.
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