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Abstract

A rigorous justification of several well-known mathematical models
of incompressible fluid flows can be given in terms of singular limits of
the scaled Navier-Stokes-Fourier system, where some of the characteristic
numbers become small or large enough. We discuss the problem in the
framework of global-in-time solutions for both the primitive and the target
system.
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1 Introduction

Fluid dynamics is a part of fluid mechanics that deals with fluid flows. Its
applicability includes prediction of weather patterns in meteorology, numerous
engineering problems involving fluids in motion, understanding complicated dy-
namics of gaseous stars and the interstellar space in astrophysics, and even
certain traffic problems as soon the traffic can be viewed as a continuous fluid,
to name only a few. While most of these applications concern compressible or at
least slightly compressible fluids, the prevailing part of theoretical studies is de-
voted to mathematical models of idealized incompressible fluids. The classical
Navier-Stokes system of equations describing the motion of a viscous incom-
pressible fluid has become one of the prototype examples of a simple nonlinear
problem in the theory of partial differential equations, the complete solution of
which is still highly open despite a concerted and long lasting effort of genera-
tions of excellent mathematicians, see the survey paper of Fefferman [38].

Simplified mathematical models, like those based on the concept of incom-
pressibility, may be viewed, and in many cases can be formally derived, as limits
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of more complex systems, where certain characteristic parameters become neg-
ligible or predominant. In a series of seminal papers, Ebin [32] and Klainerman,
Majda [57], [58] set forth a rigorous basis of a mathematical theory of singular
limits, in particular in the so-called low-Mach-number regime, where the speed
of sound in a compressible medium dominates the characteristic speed of the
fluid and the latter is driven to incompressibility. More recently, Klein et al.
[59], [60], [61], [62], exploiting the same idea, proposed several numerical meth-
ods for solving complex problems in fluid dynamics in the singular limit regimes.
Besides the evident benefit of solving more efficiently and with less numerical ef-
fort a given problem, the ultimate goal of these studies was to shed some light on
the complex behavior of solutions to the original system in the singular regime.
At a purely theoretical level, Hagstrom and Lorentz [52] established existence
of global-in-time classical solutions to the compressible Navier-Stokes system in
a two dimensional physical space provided the Mach number is small enough.
Similar ideas were exploited by Sideris and Thomases [96] in the context of
nonlinear elastodynamics.

The standard primitive equations in mathematical fluid dynamics reflect the
basic physical principles: conservation of mass, momentum, and energy, together
with general thermodynamic relations between the corresponding macroscopic
state variables. In order to reveal characteristic properties of a specific fluid
flow, the system must be written in terms of dimensionless variables scaled by
a suitable system of characteristic units. In such a way, a system of equations
determined to describe the mass flow rate of petroleum in a pipe line is clearly
distinguished from its counterpart designed to model the evolution of a gaseous
star. Typical time, length and other scales may differ drastically in problems
of weather forecasting from those in astrophysics. A spectacular example of
interaction of different scales are the gigantic eruptions observed on the Sun,
where, however, the medium viscosity of the fluid is the same as that of honey
- a material for which any kind of turbulent behavior under normal conditions
is hardly expected.

Following a simple scheme

primitive system −→ (singular limit) −→ target system

we discuss several rather theoretical aspects of problems in continuum fluid
mechanics arising as physically grounded singular limits of complete, meaning
energetically closed, fluid systems. In particular, we focus on the following basic
issues:

• Solvability of the primitive system in the framework of physically admis-
sible data, existence of solutions on a given, possibly large, time interval.

• Stability of given families of solutions to the primitive system with respect
to the singular parameters, pre-compactness in suitable topologies.

• Convergence toward the target system in the process of singular limit,
identification of possible sources of instabilities, with the perspective of
future implementation of numerical methods.
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As the target problem in our analysis typically includes the Navier-Stokes
system describing the motion of an incompressible fluid in the physically rele-
vant three-dimensional space, any rigorous mathematical theory in necessarily
based on the concept of weak solution introduced in the pioneering work of Leray
[67], and later developed by Hopf [54], Ladyzhenskaya [65], among many others.
Indeed strong or classical solutions to this system are known to exist only on
possibly short time intervals, or for specific classes of (small) initial data. Here
“small” is to be understood close to a (known) regular solution. Although regu-
lar solutions exist for a generic class of initial data, and the set of (hypothetical)
singularities is very “small” (see Caffarelli, Kohn, and Nirenberg [18]), we have
to rely on the weak solutions as long as our analysis includes large data and so-
lutions defined globally in time. Accordingly, solutions of the primitive problem
are considered in the same framework. A recent analogy of Leray’s theory for
the compressible barotropic fluids was developed by P.-L.Lions [71], and later
extended to physically more realistic state equations in [39]. Needless to say
we can hardly expect to get better results for the apparently more complicated
primitive system in the case of a complete fluid, where the balance of the total
energy must be taken into account. Although the limit process is confined to
relatively weak topologies, we can still clearly identify the principal difficulties
that are essentially independent of the regularity properties of the solutions,
namely the presence of rapidly oscillating acoustic waves.

To conclude this introduction, we point out that an alternative approach to
singular limits, leaning on the concept of classical solutions to primitive systems
defined on possibly short time intervals, has been developed for both viscous and
inviscid fluids. We refer the reader to the papers of Alazard [1], [2], [3], Danchin
[23], [24], Gallagher [44], Hoff [53], Métivier and Schochet [83], Schochet [92],
[93], or the monograph by Chemin et al. [21], to name only a few, for various
aspects of this method.

2 Energetically closed fluid systems

In this study, we concentrate on energetically closed fluid systems, that means,
the energy is neither supplied from the outer world nor lost within the system,
and the physical boundary of the fluid is energetically insulated. In accordance
with First law of thermodynamics, the total energy of such a system is constant
in time. Although we are primarily concerned with continuum fluid mechanics,
the basic state variables - the fluid mass density and internal energy as well as
the basic thermodynamic relations - are better understood in terms of statistical
mechanics, see Gallavotti [45].

2.1 Thermostatic state variables, entropy

We assume that the state of a fluid at rest is fully determined by two fundamen-
tal quantities: the mass density %, and the internal energy e. Moreover, Second
law of thermodynamics postulates the existence of another state variable - the
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entropy s. The entropy is an increasing function of the internal energy, the
relation

∂s

∂e
=

1
ϑ

> 0

defines the absolute temperature ϑ. According to Callen [19], the entropy enjoys
the following remarkable properties:

• Third law of thermodynamics. The entropy tends to zero provided ϑ → 0,
cf. Belgiorno [12], [13].

• The entropy production rate is non-negative in any admissible physical
process.

• Equilibrium states of the system minimize the entropy production.

• Equilibrium states maximize the total entropy among all admissible states
with the same mass and energy.

Another thermodynamic quantity considered in this study is the pressure p.
The functions e, s, and p are interrelated through Gibbs’ equation

ϑDs = De + pD

(
1
%

)
, (2.1)

see Callen [19]. In what follows, the thermodynamic functions e = e(%, ϑ),
s = s(%, ϑ), p = p(%, ϑ) are considered as given functions of the density % and
the absolute temperature ϑ.

The specific relations (%, ϑ) 7→ p(%, ϑ), (%, ϑ) 7→ e(%, ϑ) are termed equations
of state, see Eliezer, Ghatak, and Hora [34]. A simple and illustrative example
is the equation of state of a general monoatomic gas, where

p =
2
3
%e, (2.2)

see [34]. Combining (2.1), (2.2) we easily deduce that

p = ϑ5/2P
( %

ϑ3/2

)
for a certain function P. (2.3)

The associated entropy reads

s = S
( %

ϑ3/2

)
, where S′(Z) = −3

2

5
3P (Z)− ZP ′(Z)

Z2
.

The simplest and most natural choice is to take P (Z) = aZ, a > 0, for which
(2.3) reduces to the standard Boyle-Marriot law of a perfect gas. However, it is
interesting to note that this assumption violates Third law of thermodynamics
as s → −∞ for ϑ → 0. We may conclude that P in (2.3) cannot be linear at
least for real gases in a so-called degenerate regime %/ϑ3/2 >> 1.
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2.2 Thermodynamic stability, equilibrium states

The real fluids are rarely found in equilibrium. In accordance with the previ-
ous discussion, we still assume that the instantaneous state of a fluid can be
described by the thermostatic variables % and ϑ that are now measurable func-
tions of the space variable x in the underlying physical space Ω ⊂ R3. We also
assume that the thermodynamic functions p, e, and s can be used to describe
the system out of equilibrium. We introduce the total mass

M =
∫

Ω

% dx

and the total energy

E =
∫

Ω

%e(%, ϑ)− %F dx,

where F represent a potential of a conservative force acting on the fluid.
Accordingly, the equilibrium state is characterized by a constant temperature

ϑ > 0 and a static density distribution %̃ satisfying

∇xp(%̃, ϑ) = %̃∇xF on Ω. (2.4)

Our goal is to show that the equilibrium state is uniquely determined by the
total mass M and the total energy E. We exploit the general principle that any
equilibrium state maximizes the total entropy

S =
∫

Ω

%s(%, ϑ) dx

among all states with the same M and E. To see this, we introduce hypothesis
of thermodynamic stability :

∂p(%, ϑ)
∂%

> 0,
∂e(%, ϑ)

∂ϑ
> 0, (2.5)

cf. Bechtel, Rooney and Forest [11]. The former condition in (2.5) says that
compressibility of the fluid is always positive, while the latter means that specific
heat at constant volume is positive.

Next, we introduce a quantity called Helmholtz function,

H(%, ϑ) = %e(%, ϑ)− ϑ%s(%, ϑ), (2.6)

reminiscent of the Helmholtz free energy %e− ϑ%s. Since e and s satisfy Gibbs’
relation (2.1), we compute that

∂2H(%, ϑ)
∂%2

=
1
%

∂p(%, ϑ)
∂%

and
∂H(%, ϑ)

∂ϑ
=

%

ϑ
(ϑ− ϑ)

∂e(%, ϑ)
∂ϑ

.

In view of hypothesis of thermodynamic stability (2.6), we have
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• % 7→ H(%, ϑ) is strictly convex,

• ϑ 7→ H(%, ϑ) is decreasing for ϑ < ϑ and increasing for ϑ > ϑ for any fixed
%.

The next observation is that the static density distribution %̃ satisfies

∂H(%̃, ϑ)
∂%

= F + const in Ω

provided %̃ is strictly positive. We point out that such a conclusion may be
false if %̃ vanishes on some part of Ω. On the other hand, strict positivity of
%̃ is guaranteed as soon as ∂%p(0, ϑ) > 0, see [42] for more information on the
structure of static solutions.

By virtue of the previous arguments, the function

(%, ϑ) 7→ H(%, ϑ)− ∂H(%̃, ϑ)
∂%

(%− %̃)−H(%̃, ϑ)

attains its strict global minimum (zero) at %̃, ϑ. On the other hand, for all
functions %, ϑ such that

M =
∫

Ω

% dx =
∫

Ω

%̃ dx, E =
∫

Ω

%e(%, ϑ)− %F dx =
∫

Ω

%̃e(%̃, ϑ)− %̃F dx,

we deduce that
∫

Ω

(
H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)−H(%̃, ϑ)

)
dx = ϑ

∫

Ω

(
%̃s(%̃, ϑ)− %s(%, ϑ)

)
dx.

Thus, in accordance with Second law of thermodynamics, the static (equilibrium)
solution indeed maximizes the total entropy among all admissible states of the
system having the same total mass and energy. In particular, the static solution
is unique provided that %̃ is strictly positive.

It seems interesting to see the impact of hypothesis of thermodynamic stabil-
ity on the monoatomic state equation introduced in (2.3). Besides the obvious
observation that P ′ > 0 in (2.3), the latter condition in (2.5) gives rise to

5
3P (Z)− P ′(Z)Z

Z
> 0,

in particular, the function Z 7→ P (Z)/Z5/3 is decreasing, and we set

p∞ = lim
Z→∞

P (Z)
Z5/3

.

The function pc(%) = p∞%5/3 is termed cold pressure as it corresponds to the
limit of p for ϑ → 0. As a matter of fact, most real gases in the degenerate regime
%/ϑ3/2 >> 1 behave like Fermi gas for which p∞ > 0, see Eliezer, Ghatak and
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Hora [34]. Accordingly, the static distribution of the density related to the value
ϑ = 0 satisfies

p∞∇x%̃5/3 = %̃∇xF. (2.7)

Integrating (2.7) we easily obtain that

%2/3 =
2F

5p∞
+ c for a certain constant c.

Thus if the prescribed total mass M is small enough, solutions %̃ of (2.7) must
vanish on a certain part of Ω. In other words, the degenerate state of zero tem-
perature admit equilibrium solutions containing vacuum! On the other hand,
the state for which the temperature vanishes identically is possibly not reachable
by any physically relevant time evolution of the fluid.

2.3 Time evolution of fluid systems

Fluids out of equilibrium evolve (change) in time. We consider two basic con-
cepts of transport in a fluid: convection and diffusion.

2.3.1 Kinematics of fluid motion

Convection is responsible for the transfer of mass and energy by means of bulk
macroscopic currents of molecules within the fluid. By its proper definition,
convection is always accompanied by mass transport characterized by a macro-
scopic velocity field ~u. Given a fixed volume B ⊂ Ω, the physical principle of
mass conservation reads:

∫

B

%(t2, x) dx−
∫

B

%(t1, x) dx = −
∫ t2

t1

∫

B

%(t, x)~u(t, x) · ~n(x) dSx, (2.8)

where t ∈ R denotes the time, and ~n is the outer normal vector to the boundary
∂B. Relation (2.8) should hold on any time interval [t1, t2] and any set B.

A priori, the density % need not be a continuous function of t and x. It is
the total mass of the fluid contained in B that should change continuously in
time,

t 7→
∫

B

%(t, x) dx ∈ C[t1, t2].

Accordingly, it is convenient to replace (2.8) by

lim
δ→0

∫ t2

t1

∫

B

(
%(t, x)∂tϕδ(t, x) + %(t, x)~u(t, x) · ∇xϕδ(t, x)

)
dx dt = 0, (2.9)

where ϕδ is a family of smooth functions vanishing for t = t1, t2 and x ∈ ∂B,
and such that

0 ≤ ϕδ ≤ 1, ϕδ ↗ 1 as δ → 0.
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Apparently, relation (2.9) is stronger than (2.8) if the velocity and the density
are continuous functions, and, on the other hand, it makes sense provided % and
~u are merely locally integrable.

The next step is to replace (2.9) by a more restrictive stipulation
∫ T

0

∫

Ω

(
%(t, x)∂tϕ(t, x) + %(t, x)~u(t, x) · ∇xϕ(t, x)

)
dx dt = 0 (2.10)

for any ϕ ∈ C∞c ((0, T ) × Ω), where (0, T ) is a reference time interval. It is
easy to check that relation (2.10) gives rise to the standard form of equation of
continuity

∂t%(t, x) + divx(%(t, x)~u(t, x)) = 0 (2.11)

provided % and ~u are continuously differentiable. Relation (2.10) is called weak
formulation of (2.11), where the derivatives are understood in the sense of dis-
tributions. The weak solutions discussed in this study are based on weak for-
mulation of basic balance law in the spirit of (2.10).

2.3.2 Mass transport

Smooth velocity fields determine the streamlines - trajectories of (hypothetical)
individual fluid particles. These are defined as solutions of a system of ordinary
differential equations

~X ′(t) = ~u(t, ~X(t)), ~X(0) = ~X0,

where ~X0 denotes the initial position of a given material point. A description of
a fluid related to the moving particles ~X(t) is called Lagrangean, in contrast with
the Eulerian description used above, where the reference coordinate system is
related to points in the physical space.

For the streamlines to be uniquely defined, the vector field ~u must be Lip-
schitz continuous with respect to the x−variable. Unfortunately, the velocity
fields obtained in the framework of weak solutions to problems in fluid mechan-
ics do not (are not known to) enjoy this property. Pursuing the philosophy of
the previous section, we may say that the motion of individual (non-existing)
particles is irrelevant and concentrate on the volume transport. A natural ques-
tion to ask is therefore what are the minimal regularity properties of the velocity
field ~u for % to be uniquely determined by equation (2.11).

To avoid problems with the boundary of the physical space, assume that
Ω = R3. Following DiPerna and Lions [30] we regularize (2.11) by means of
convolution with a family of regularizing kernels κδ obtaining

∂t%δ + divx(%δ~u) = rδ ≡ divx(%δ~u− (%~u)δ),

where we have denoted vδ = v?κδ. Note that the same treatment can be applied
to the weak solutions satisfying (2.10). Since the left-hand side can be written
in the form

∂t%δ + divx(%δ~u) = ∂t%δ +∇x%δ · ~u + %δdivx~u,
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the solution %δ is uniquely determined by the initial data as soon as

divx~u ∈ L1(0, T ; L∞(Ω)). (2.12)

The last step is to let δ → 0 to recover the original solution %. To this end, we
need to show that the commutator rδ vanishes in the limit. It turns out that
this is indeed the case provided

% ∈ Lp(0, T ; Lq(Ω)), ~u ∈ Lp′(0, T ; W 1,q′(Ω;R3)),
1
p

+
1
p′

=
1
q

+
1
q′

= 1,

see DiPerna and Lions [30]. Although the above procedure has been recently
generalized to a vast class of “densities” and velocity fields by Ambrosio [5],
condition (2.12) remains essentially unchanged.

Solutions of (2.11) resulting from the regularizing procedure delineated above
are usually termed renormalized solutions. It is easy to check that they satisfy,
in the weak sense, renormalized equation of continuity

∂tb(%) + divx(b(%)~u) +
(
b′(%)%− b(%)

)
divx~u = 0, (2.13)

where b is an arbitrary (non-linear) function. Similarly to the concept of en-
tropy solution to scalar conservation laws introduced by Kruzhkov [64], equation
(2.13) can be taken as in intrinsic definition of renormalized solutions.

Let us point out that validity of (2.12) in the class of weak solutions to com-
pressible fluid models represents a major open problem. As a matter of fact,
condition (2.12) plays a role of important regularity criterion for the compress-
ible Navier-Stokes system (see Fan, Jiang and Ou [37]), similar to the celebrated
condition

curl ~u ∈ L1(0, T ; L∞(Ω;R3))

of Beale, Kato and Majda [10] for the incompressible fluids.
Violation of (2.12) may result in two kinds of severe singularities for the

density %, namely (i) the mass collapse % = ∞ or (ii) the vacuum % = 0. As the
Navier-Stokes system as well as many other related equations in fluid dynamics
apply only to non-dilute fluids, the appearance of a vacuum would certainly
indicate a serious defect of the model.

2.3.3 Newton’s second law, equation of linear momentum

A rather vague definition of a fluid asserts that fluid is a material that can flow.
More specifically, fluids can be characterized by Stokes’ law :

T = S− pI,

where T is the Cauchy stress, p is the thermostatic pressure introduced in Sec-
tion 2.1, and the symbol S denotes the viscous stress tensor. Accordingly, the
classical formulation of Newton’s second law, or conservation of linear momen-
tum, reads

∂t(%~u) + divx(%~u⊗ ~u) +∇xp = divxS+ %∇xF, (2.14)
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or, in the weak form similar to (2.10),

∫ T

0

∫

Ω

(
%~u · ∂tϕ + %(~u⊗ ~u) : ∇xϕ + pdivxϕ

)
dx dt (2.15)

=
∫ T

0

∫

Ω

(
S : ∇xϕ− %∇xF · ϕ

)
dx dt

for any compactly supported function ϕ ranging in R3.
In the absence of viscous stresses, meaning S ≡ 0, we deduce from (2.11),

(2.15) that

∂t

(1
2
%|~u|2 − %F

)
+ divx

(1
2
%|~u|2~u

)
+ divx(p~u) = pdivx~u,

where 1
2%|~u|2 is the kinetic energy. If, in addition, we assume that p depends

only on %, the term pdivx~u may be expressed by means of (2.13) yielding

∂t

(
%Q(%)

)
+ divx

(
%Q(%)~u

)
+ p(%)divx~u = 0,

where we have set

Q(%) =
∫ %

1

p(z)
z2

dz.

Thus we have deduced conservation of total energy in the form

∂t

( 1
2
%|~u|2

︸ ︷︷ ︸
kinetic energy

+ %Q(%)︸ ︷︷ ︸
potential energy

−%F
)

+ divx

((1
2
%|~u|2 + %Q(%)

)
~u
)

+divx(p~u) = 0.

However, any real evolutionary process based on principles of classical ther-
modynamics is bound by Second law of thermodynamics to dissipate a part of
its mechanical energy into heat. Note that a “ghost effect” of this principle
seems to be somehow incorporated even in formally conservative systems like
(2.11), (2.14), with S ≡ 0, because of the inevitable occurrence of shocks in their
solutions, see Serre [94].

Dissipative effects in (2.14) are produced exclusively by the viscous stress
S. Viscosity is always related to motion and as such depends on the velocity
gradient ∇x~u. Note that S cannot depend on ~u itself as the viscosity vanishes
for the velocity fields related to rigid motions.

For the sake of simplicity, we assume that S is a linear function of ∇x~u. It
can be shown, by virtue of the universal principle of material frame indifference,
that S is given by Newton’s rheological law

S = µ
(
∇x~u +∇x~ut − 2

3
divx~uI

)
+ ηdivx~u I, (2.16)
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where µ is the shear viscosity coefficient and η the bulk viscosity coefficient that
may depend on the thermostatic variables % and ϑ. It is interesting to note that
the velocities, for which the tensor

∇x~u +∇x~ut − 1
2
divx~uI

vanishes, form a finite dimensional space of conformal Killing fields, see Reshet-
nyak [90].

In the presence of viscosity, the balance of kinetic energy reads

∂t

(1
2
%|~u|2 − %F

)
+ divx

(1
2
%|~u|2~u

)
+ divx(p~u)− divx(S~u) = pdivx~u− S : ∇x~u.

(2.17)
Since the total energy of the fluid is a conserved quantity, we formally write
down a balance law for the internal energy:

∂t(%e) + divx(%e~u) +∇x~q = S : ∇x~u− pdivx~u, (2.18)

where ~q is the internal energy diffusive flux specified in the next section.

2.3.4 Irreversibility of time, mechanical energy dissipation, entropy
production

From the analytical point of view, equation (2.18) is not very convenient as the
terms on the right-hand side are difficult to handle in view of the available a
priori bounds. Fortunately, we can use Gibbs’ relation (2.1) to rewrite (2.18) in
the form of entropy balance

∂t(%s) + divx(%s~u) + divx

(
~q

ϑ

)
= σ, (2.19)

with the entropy production rate

σ =
1
ϑ

(
S : ∇x~u− ~q · ∇xϑ

ϑ

)
. (2.20)

In agreement with Second law of thermodynamics, σ is non-negative for any
physically admissible process. This yields, in accordance with (2.16),

µ

∣∣∣∣∇x~u +∇x~ut − 2
3
divx~u I

∣∣∣∣
2

≥ 0, η|divx~u|2 ≥ 0,

and
−~q · ∇xϑ ≥ 0. (2.21)

In particular, the viscosity coefficients µ and η must be non-negative.
Relation (2.21) suggests that the internal energy flux should take place in

the opposite direction to the temperature gradient. The simplest solution is
provided by Fourier’s law

~q = −κ∇xϑ, (2.22)
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where κ ≥ 0 is the heat conductivity coefficient that may depend on % and ϑ.
Thus the transport of heat takes place even if the fluid is at rest, meaning if the
velocity field vanishes, and continues as long as ϑ is not homogeneous in space.
The heat transfer by means of ~q is an example of diffusion transport in fluid
dynamics - energy transfer caused by random Brownian motion of individual
molecules. As pointed out, heat diffusion takes place even if the mass transfer
caused by convection vanishes. Being of random nature, diffusion processes are
macroscopically irreversible. In such a way, equation (2.21) and positivity of σ
indicate the irreversibility of time in classical fluid mechanics.

2.3.5 Total energy balance, boundary conditions

Putting equations (2.17), (2.18) together, we obtain the total energy balance in
the form

∂t




1
2
%|~u|2

︸ ︷︷ ︸
kinetic energy

+ %e(%, ϑ)︸ ︷︷ ︸
internal energy

−%F


 (2.23)

+divx




(
1
2
%|~u|2 + %e(%, ϑ) + p(%, ϑ)

)
~u

︸ ︷︷ ︸
convective energy flux


 + divx


 ~q − S~u︸ ︷︷ ︸

diffusive energy flux


 = 0.

As our aim is to study energetically insulated systems, the total energy must
be independent of time,

∂t

∫

Ω

(
1
2
%|~u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = 0. (2.24)

Accordingly, the flux of the energy through the boundary ∂Ω should vanish
at any time. To this end, we assume that the boundary is impermeable,

~u · ~n|∂Ω = 0 (2.25)

and thermally insulated,
~q · ~n|∂Ω = 0. (2.26)

Condition (2.25) may supplemented with

(S~u) · ~n|∂Ω = 0. (2.27)

As the viscous stress tensor S is symmetric, we have (S~u) · ~n = (S~n) · ~u; whence
(2.25), (2.27) give rise to the complete slip boundary condition

(S~n)× ~n|∂Ω = 0. (2.28)

Note that (2.25), (2.27) are obviously satisfied provided the fluid adheres com-
pletely to the boundary, specifically

~u|∂Ω = 0 (2.29)
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provided ∂Ω is at reast. As evidenced by vast amount of literature, the no-slip
boundary conditions (2.29) are the most popular for models of viscous fluids.
However, some recent studies of nano-fluids and related phenomena suggest a
compromise between (2.28), (2.29) provided by the so-called Navier’s boundary
condition

β[~u]tangent + [S~n]tangent|Ω = 0, (2.30)

where β ≥ 0 plays a role of a friction parameter (see Buĺıček, Málek, and
Rajagopal [15], Priezjev and Troian [88], among others). For the total energy
to be conserved, condition (2.30) must be supplemented with

~q · ~n + β|~u|2|∂Ω = 0 (2.31)

replacing (2.26).

2.3.6 Entropy production in the framework of weak solutions

Weak solutions do not provide sufficient control over the kinetic energy transfer.
Such a phenomenon is well known in the theory of (formally) conservative non-
linear balance laws, where the mechanical energy is dissipated by means of
shock waves, whereas the entropy is being produced on sets of zero measure
that cannot be captured by the classical framework. Accordingly, the kinetic
energy balance (2.17) may become an inequality

∂t

(1
2
%|~u|2−%F

)
+divx

(1
2
%|~u|2~u

)
+divx(p~u)−divx(S~u)−pdivx~u+S : ∇x~u ≤ 0

due to (hypothetical) occurrence of concentrations in the dissipative term S :
∇x~u. Although such a phenomenon would certainly indicate a serious drawback
of the model, the problem is still open even in the context of incompressible
fluids, see Caffarelli, Kohn and Nirenberg [18], Duchon and Robert [31], Eyink
[36], Nagasawa [85] for various interesting related issues. Very roughly indeed,
we can say that a part of the dissipated energy expressed by the quadratic
expression S : ∇x~u may “disappears” attaining higher and higher Fourier modes
in a finite time.

The fact that kinetic energy may be lost in an uncontrollable way was ob-
served in a recent paper by Ma, Ukai and Yang [75], where time periodic solu-
tions were constructed for the full Navier-Stokes-Fourier system on the whole
space, albeit in dimension 5. Formally, the growth of entropy precludes such a
possibility, therefore there must be a part of energy “spread” quickly to very
large spatial regions. This example also shows that unbounded domains may
be, in a certain sense, unphysical.

Accepting the hypothetical possibility of uncontrollable dissipation of the
kinetic energy, the entropy production σ must be enhanced accordingly in order
to keep the total energy constant in time. Thus we replace (2.20) by

σ ≥ 1
ϑ

(
S : ∇x~u− ~q · ∇xϑ

ϑ

)
, (2.32)
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where σ is understood as a non-negative measure on the space-time cylinder
[0, T ] × Ω. Consequently, a proper weak formulation of entropy balance (2.19)
reads

∫ T

0

∫

Ω

(
%s∂tϕ + %s~u · ∇xϕ +

~q

ϑ
· ∇xϕ

)
dx dt+ < σ,ϕ >= 0 (2.33)

for any ϕ ∈ C∞c ((0, T ) × Ω), where σ ∈ M+([0, T ] × Ω), and <, > denotes the
duality pairing between M and the space C of continuous functions. Note that
the weak formulation implicitly includes satisfaction of the no-flux boundary
condition (2.26).

2.4 Navier-Stokes-Fourier system

In order to conclude the introductory part of this study, we formulate the prim-
itive system to be rescaled and analyzed in the forthcoming sections. It is more
convenient to write down the equations in the “classical” form although they
should be understood in the weak sense specified above. On the basis of his-
torical background, the primitive system is called Navier-Stokes-Fourier system
consisting of the following field equations (see Gallavotti [46]) :

Conservation of Mass

∂t% + divx(%~u) = 0; (2.34)

Balance of Momentum

∂t(%~u) + divx(%~u⊗ ~u) +∇xp = divxS+ %∇xF ; (2.35)

Balance of Entropy

∂t(%s) + divx(%s~u) + divx

(
~q

ϑ

)
= σ; (2.36)

supplemented with the boundary conditions:
Impermeability

~u · ~n|∂Ω = 0; (2.37)

Navier’s Slip Condition

β[~u]tangent + [S~n]tangent|Ω = 0, β ∈ [0,∞], (2.38)

where β = ∞ represents the no-slip condition (2.29);
Flux Condition

~q · ~n + β|~u|2|∂Ω = 0, β < ∞, ~q · ~n|∂Ω = 0 for β = 0,∞. (2.39)

In addition, we have

Total Energy Conservation
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∂t

∫

Ω

(
1
2
%|~u|2 + %e− %F

)
(t, ·) dx = 0, (2.40)

where the thermodynamic functions p, s, and e are interrelated through

Gibbs’ Equation

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D
(

1
%

)
. (2.41)

Finally, the entropy production satisfies

σ ≥ 1
ϑ

(
S : ∇x~u− ~q · ∇xϑ

ϑ

)
. (2.42)

It is not difficult to check that (2.42) necessarily becomes an equality in the
framework of smooth solutions to the system. As a matter of fact, a bit more
tedious but still mathematically quite standard argument guarantees equality
in (2.42) provided a weak solution %, ϑ, ~u is know to belong to the following
regularity class:

• the density and the absolute temperature are measurable functions satis-
fying

0 < % ≤ % ≤ %, 0 < ϑ < ϑ < ϑ a.a. on (0, T )× Ω;

• the velocity is bounded, specifically,

‖~u‖L∞((0,T )×Ω;R3) ≤ u;

• the density is square integrable,

∇x% ∈ L2((0, T )× Ω;R3).

The last condition seems quite restrictive but still inevitable in passing from the
entropy to internal energy balance equation.

3 Scale analysis of the primitive system

We introduce a dimensionless version of the primitive equations represented
by the Navier-Stokes-Fourier system. We identify the characteristic numbers
and discuss the associated singular limit problems, where one or more of these
parameters tends to zero or become extremely large. Finally, we show that
similar scaling procedure may be imposed also on the shape and diameter of
the physical domain as well as some parameters appearing in the boundary
conditions.
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3.1 Scaled equations

For each physical quantity X, we introduce its characteristic value Xchar and
replace X with its dimensionless analogue X/Xchar in the Navier-Stokes-Fourier
system introduced in Section 2.4. As a result we obtain a scaled system of
equations ( see Klein et al. [62]):

[Sr]∂t% + divx(%~u) = 0, (3.1)

[Sr]∂t(%~u) + divx(%~u⊗ ~u) +
1

[Ma]2
∇xp =

1
[Re]

divxS+
1

[Fr]2
%∇xF, (3.2)

[Sr]∂t(%s) + divx(%s~u) +
(

pchar

%charechar

)
1

[Pe]
divx

(
~q

ϑ

)
=

(
pchar

%charechar

)
σ, (3.3)

where

σ ≥ 1
ϑ

( [Ma]2

[Re]
S : ∇x~u− 1

[Pe]
~q · ∇xϑ

ϑ

)
, (3.4)

together with the total energy balance

d
dt

∫

Ω

(
[Ma]2

1
2
%|~u|2 +

(
%charechar

pchar

)
%e− [Ma]2

[Fr]2
%F

)
dx = 0. (3.5)

The characteristic numbers are defined as follows:

Symbol Definition Name

Sr Lchar/(TcharUchar) Strouhal number

Ma Uchar/
√

pchar/%char Mach number

Re %charUcharLchar/νchar Reynolds number

Fr Uchar/
√

Fchar Froude number

Pe pcharLcharUchar/(ϑcharκchar) Péclet number

The symbols Tchar, Lchar, Uchar, and νchar denote the characteristic time, length,
velocity, and viscosity, respectively. Note that there are two viscosity coef-
ficients, namely µ and η that may yield, in general, two Reynolds numbers
related to the shear and bulk viscosity, respectively. In practical situation when
the compressible medium is a gas, it is customary to adopt Stokes’ hypothesis
η = 0 and set νchar = µchar.

Two qualitatively different scalings should be distinguished: (i) process scal-
ing, where the material remains the same but the kinematic variables Tchar,
Lchar, Uchar vary, (ii) constitutive scaling, where we change the material proper-
ties of the fluid. In the process scaling the choice of the characteristic numbers
is basically arbitrary, while the constitutive scaling is restricted by natural ther-
modynamic relations. For instance, the quantity

(
%charechar

pchar

)
≈ 1
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should be of order 1 for gases. Similarly, changes in ϑchar should be reflected in
νchar provided the latter is temperature dependent.

The reader may consult the monographs of Chemin et al. [21], Majda [77],
Zeytounian [101], [103] for other possibilities of the choice of scaling parameters.

3.2 Incompressible limits

In the process of incompressible limits, the pressure p becomes (formally) con-
stant or at least a given function of x, independent of time. Obviously this is the
case when the Mach number Ma becomes small, say, Ma = ε → 0. This means
that the characteristic speed Uchar is dominated by the quantity

√
pchar/%char,

where the latter is the speed of sound. In addition, we are interested in processes,
where the limit velocity field is non-zero. Consequently, in order to control the
velocity, the entropy production σ/ε2 must remain bounded uniformly for ε → 0.
Keeping the Péclet number of order 1 we therefore conclude that |∇xϑ| ≈ ε,
meaning, the temperature necessarily becomes spatially homogeneous in the
limit process.

Accordingly, the static solutions ϑ = ϑ > 0 - a positive constant, and %̃ =
%̃(x), solving

∇xp(%̃, ϑ) = %̃∇xF,

will play a crucial role in the forthcoming analysis of the incompressible limits.
As a consequence of hypothesis of thermodynamic stability (2.5), we expect
the static solution to be globally stable, meaning, attracting all global-in-time
trajectories generated by solutions to the Navier-Stokes-Fourier system. In order
to see that this is indeed the case, we revoke the Helmholtz function H(%, ϑ)
introduced in (2.6). Using arguments similar to Section 2.2, we deduce a so-
called total dissipation balance in the form

∫

Ω

(
1
2
%|~u|2 + H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)−H(%̃, ϑ)

)
(τ2, ·) dx (3.6)

+ϑσ
(
[τ1, τ2]× Ω

)
=

∫

Ω

(
1
2
%|~u|2 + H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)−H(%̃, ϑ)

)
(τ1, ·) dx

for a.a. τ1 < τ2, provided Ω is a bounded domain and the static density %̃ is
normalized so that ∫

Ω

%̃ dx =
∫

Ω

%(t, ·) dx.

As we have seen in Section 2.2, the quantity

H(%, ϑ)− ∂H(%̃, ϑ)
∂%

(%− %̃)−H(%̃, ϑ)

behaves like
(%− %̃)2 + (ϑ− ϑ̃)2
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at least for %, ϑ that are closed to the equilibrium state %̃, ϑ. Thus the integral
∫

Ω

(
1
2
%|~u|2 + H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)−H(%̃, ϑ)

)
(t, ·) dx

can be used to “measure” the distance of any trajectory (%(t, ·), ϑ(t, ·), ~u(t, ·))
to the equilibrium state (%̃, ϑ, 0). It follows from (3.6) that this distance is
decreasing in time.

Identity (3.6) holds for the unscaled system. Assume now that Ma = ε,
Fr = εα/2 for a certain parameter α ∈ [0, 2], while the other characteristic
numbers in the scaled system (3.1 - 3.5) are supposed to be of order 1. Thus
the scaled version of (3.6) reads

∫

Ω

(
1
2
%|~u|2 +

1
ε2

(
H(%, ϑ)− ∂H(%̃ε, ϑ)

∂%
(%− %̃ε)−H(%̃ε, ϑ)

))
(τ2, ·) dx (3.7)

+
ϑ

ε2
σ
(
[τ1, τ2]× Ω

)
=

∫

Ω

(
1
2
%|~u|2 +

1
ε2

(
H(%, ϑ)− ∂H(%̃ε, ϑ)

∂%
(%− %̃ε)−H(%̃ε, ϑ)

))
(τ1, ·) dx,

where
∇xp(%̃ε, %) = ε2−α%̃ε∇xF,

and

σ ≥ 1
ϑ

(
ε2S : ∇x~u− ~q · ∇xϑ

ϑ

)
. (3.8)

Consequently, in order to control the norm of global-in-time solutions in the low
Mach number regime, we have to make sure that the initial data %0, ϑ0, ~u0 are
chosen in such a way that the expression
∫

Ω

(
1
2
%0|~u0|2 +

1
ε2

(
H(%0, ϑ0)− ∂H(%̃ε, ϑ)

∂%
(%0 − %̃ε)−H(%̃ε, ϑ)

))
(τ1, ·) dx,

remains bounded for ε → 0. This leads to the concept of prepared data discussed
in the next section.

3.2.1 Ill and well prepared initial data

Assume that the initial state of the fluid governed by the scaled Navier-Stokes-
Fourier system, with Ma = ε, Fr = εα, is determined by the data

%(0, ·) = %0,ε, ϑ(0, ·) = ϑ0,ε, ~u(0, ·) = ~u0,ε.

Going back to the scaled dissipation balance (3.7), we say that the data are
prepared as soon as the integral
∫

Ω

(
1
2
%0,ε|~u0,ε|2 +

1
ε2

(
H(%0,ε, ϑ0,ε)− ∂H(%̃ε, ϑ)

∂%
(%0,ε − %̃ε)−H(%̃ε, ϑ)

))
dx
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is bounded uniformly for ε → 0. Writing

%0,ε = %̃ε + ε%
(1)
0,ε, ϑ0,ε = ϑ + εϑ

(1)
0,ε

we observe the prepared data correspond to %
(1)
0,ε, ϑ

(1)
0,ε bounded in certain function

spaces, most typically in L2(Ω) ∩ L∞(Ω). Rather inconsistently, such a choice
is usually termed ill-prepared initial data in the literature.

On the other hand, well-prepared data enjoy the property

%
(1)
0,ε → 0, ϑ

(1)
0,ε → 0 as ε → 0,

together with the “incompressibility” of the initial velocity field

divx~u0,ε = 0.

As we shall see below, the ill-prepared data create rapidly oscillating acoustic
waves in the asymptotic limit ε → 0. Although these waves may be effectively
damped by the physical boundary or decay, at least locally, to zero on un-
bounded physical domains, their presence create the major technical problems
in the analysis of incompressible limits and may lead to instabilities in numerical
schemes.

3.3 Acoustic waves

Following the idea of Lighthill [68], [69] we rewrite the scaled Navier-Stokes-
Fourier system in the form of an acoustic equation. To this end, we first consider
a simple situation, where Ma = ε and F ≡ 0, while the other characteristic
numbers scale to one. Accordingly, the equilibrium density %̃ = % is constant in
space and we may linearize the system around the equilibrium solution (%, ϑ).

Formally, we have

ε∂t

(
%− %

ε

)
+ divx(%~u) = 0,

ε∂t(%~u) +∇x

(
p(%, ϑ)− p(%, ϑ)

ε

)
= −εdivx(%~u⊗ ~u) + εdivxS,

ε∂t

(
%s(%, ϑ)− %s(%, ϑ)

ε

)
+ s(%, ϑ)divx(%~u)

= εdivx

(
%
s(%, ϑ)− s(%, ϑ)

ε
~u

)
+ εdivx

(
κ(ϑ)

ϑ

∇xϑ

ε

)
+ ε

σ

ε
.

Moreover, linearization of thermodynamic functions yields:

p(%, ϑ)− p(%, ϑ)
ε

≈ ∂p(%, ϑ)
∂%

(
%− %

ε

)
+

∂p(%, ϑ)
∂ϑ

(
ϑ− ϑ

ε

)
,
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%s(%, ϑ)− %s(%, ϑ)
ε

≈ ∂(%s)(%, ϑ)
∂%

(
%− %

ε

)
+

∂(%s)(%, ϑ)
∂ϑ

(
ϑ− ϑ

ε

)
;

whence, determining constants A, B so that

A
∂(%s)(%, ϑ)

∂%
+ B =

∂p(%, ϑ)
∂%

, A
∂(%s)(%, ϑ)

∂ϑ
=

∂p(%, ϑ)
∂ϑ

,

we may rewrite the acoustic equation in a concise form

ε∂tr + ωdivx
~V = εA

(
divx

(
%
s(%, ϑ)− s(%, ϑ)

ε
~u

)
+ divx

(
κ(ϑ)

ϑ

∇xϑ

ε

)
+

σ

ε

)
,

(3.9)
ε∂t

~V +∇xr = ε (−divx(%~u⊗ ~u) + divxS) (3.10)

ε∇x

(
A

%s(%, ϑ)− %s(%, ϑ)
ε2

+ B

(
%− %

ε2

)
−

(
p(%, ϑ)− p(%, ϑ)

ε2

))
,

where

ω = As(%, ϑ) + B =
∂p(%, ϑ)

∂%
+

∣∣∣∣
∂p(%, ϑ)

∂ϑ

∣∣∣∣
2 (

%2 +
∂s(%, ϑ)

∂ϑ

)−1

,

and

r = A
%s(%, ϑ)− %s(%, ϑ)

ε
+ B

(
%− %

ε

)
, ~V = %~u.

Note that, thanks to the specific choice of the parameters A, B, the right-hand
sides of (3.9), (3.10) are bounded in terms of the quantities (%−%)/ε, (ϑ−ϑ)/ε.

As we have seen in Section 2.3.6, the entropy production rate σ at the
level of weak solutions is represented by a non-negative measure on [0, T ] ×
Ω. Consequently, to avoid time discontinuities in solutions of (3.9), (3.10),we
introduce a measure-valued function Σ,

< Σ(τ), ϕ >= − < σ, [0, τ ]ϕ > for any ϕ ∈ C(Ω).

Clearly, −Σ(τ) ∈ M+(Ω) for any τ ∈ [0, T ], and the mapping τ 7→ − < Σ, ϕ >
is non-decreasing in τ for any fixed ϕ ∈ C(Ω), ϕ ≥ 0. Finally, we can check that

∂tΣ = −σ in the sense of generalized derivatives.

Thus we arrive at the final form of the acoustic equation:

ε∂tR + ωdivx
~V = εF1, (3.11)

ε∂t
~V +∇xR = ε ~F2, (3.12)

with

R = A
%s(%, ϑ)− %s(%, ϑ)

ε
+ B

(
%− %

ε

)
+ A

Σ
ε

,
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F1 = A

(
divx

(
%
s(%, ϑ)− s(%, ϑ)

ε
~u

)
+ divx

(
κ(ϑ)

ϑ

∇xϑ

ε

))
,

and
~F2 = (−divx(%~u⊗ ~u) + divxS)

+∇x

(
A

%s(%, ϑ)− %s(%, ϑ)
ε2

+ B

(
%− %

ε2

)
−

(
p(%, ϑ)− p(%, ϑ)

ε2

))
+ A∇x

Σ
ε2

.

3.3.1 Acoustic propagator

Consider the homogeneous unscaled acoustic equation

∂tR + ωdivx
~V = 0, ∂t

~V +∇xR = 0 in (0, T )× Ω, (3.13)

where
~V · ~n|∂Ω = 0. (3.14)

The first observation is that (3.13) admits finite speed of propagation
√

ω.
Indeed a direct application of Gauss-Green formula yields∫

Ω∩B(τ)

(
|R|2 + |~V |2

)
dx ≤

∫

Ω∩B

(
|R|2 + |~V |2

)
dx for any τ ≥ 0, (3.15)

where B is a ball, and

B(τ) = {x ∈ B ∩ Ω | dist[x, ∂B] >
√

ωτ}.
The second observation is that the linear space [R, ~V ], R constant, divx

~V =
0, is invariant under the action of the evolution group generated by (3.14), more
specifically, it coincides with the kernel of its generator.

Finally, we write ~V as
~V = ~H[~V ] +∇xΦ,

where ~V denotes the Helmholtz projection onto the space of solenoidal functions,
specifically,

∆Φ = divx
~V in Ω; ∇xΦ · ~n|∂Ω = ~V · ~n|∂Ω(= 0).

Rewriting (3.13), (3.14) in terms of the potential Φ we arrive at a wave equation

∂tR + ω∆xΦ = 0, ∂tΦ + R = 0 in (0, T )× Ω, (3.16)

∇xΦ · ~n|∂Ω = 0. (3.17)
Solutions of (3.16), (3.17) may be written explicitly as

Φ(t) =
1
2

exp
(
i
√
−ω∆N t

) [
Φ0 +

i√−ω∆N

R0

]
(3.18)

1
2

exp
(
−i

√
−ω∆N t

) [
Φ0 − i√−ω∆N

R0

]

provided
Φ(0, ·) = Φ0, R0,· = R0.

The symbol −∆N denotes the self-adjoint extension of the Neumann Laplacean
on the Hilbert space L2(Ω).
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3.3.2 Duhamel’s formula

Our aim is to express a general solution of (3.11), (3.12) by means of (3.18) and
the standard Duhamel’s formula. To this end, we have to apply the Helmholtz
projection to ~F2. This formal manipulation is justified provided R and F2

satisfy certain compatibility conditions on the boundary. This is the case, for
instance, when the velocity field satisfies the complete slip condition (2.38),
with β = 0. This stipulation corresponds to the acoustically hard boundary
conditions ∇xΦ · ~n|∂Ω = 0. Writing

~F2 = ~H[~F2] +∇xH2,

we get

Φ(t) =
1
2

exp
(

i
√
−ω∆N

t

ε

)[
Φ0 +

i√−ω∆N

R0

]
(3.19)

1
2

exp
(
−i

√
−ω∆N

t

ε

)[
Φ0 − i√−ω∆N

R0

]

+
1
2

∫ t

0

exp
(

i
√
−ω∆N

(t− s)
ε

)[
H2(s) +

i√−ω∆N

F1(s)
]

ds

+
1
2

∫ t

0

exp
(
−i

√
−ω∆N

(t− s)
ε

)[
H2(s)− i√−ω∆N

F1(s)
]

ds.

Formula (3.19) reveals immediately the principal difficulty of the acoustically
hard boundary enforced by the complete slip condition, namely, fast oscillations
of the gradient component of the velocity field, with frequencies proportional
to 1/ε. This phenomenon is basically independent of the smoothness of the
solution of the primitive system and persistent provided the physical domain Ω
is bounded. The gradient component ∇xΦ should vanish in the incompressible
limit, however, the convergence takes place only in the weak topology, mean-
ing, in the sense of time averages. Strong convergence can be expected in the
following two cases:

• The underlying physical domain is unbounded, or its diameter is propor-
tional to the speed of the sound waves, meaning, to 1/ε. The dispersion
then dominates and provides the desired local decay. This idea was used
Desjardins and Grenier [28] to show time decay of acoustic waves on the
whole space R3 by means of the so-called Strichartz estimates.

• The underlying spatial domain is bounded, but the velocity field satisfies
the no-slip boundary condition ~u|∂Ω = 0. In such a case, formula (3.19) is
no longer valid, and the effect of the viscous stress must be incorporated
in the acoustic equation. The resulting system exhibits, under certain geo-
metrical restrictions imposed on Ω, a viscous boundary layer that resulting
in the decay of the gradient part, see Desjardins et al. [29].
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3.3.3 Stratified fluids

The operator −ω∆N in (3.19) can be replaced by any self-adjoint non-negative
operator A in order to obtain an abstract system

ε∂tR−A[Φ] = εF1 , ε∂tΦ + R = εH2, R(0) = R0, Φ(0) = Φ0.

This kind of problem arises in the study of strongly stratified flows, where the
Laplacean is replaced by

A[Φ] = −1
%̃
divx(%̃∇xΦ) in Ω, %̃∇xΦ · ~n|∂Ω = 0,

where %̃ is a non-constant solution of the static problem, see Masmoudi [81] or
[41, Chapter 6]. Note that A can be extended as a self-adjoint operator on the
weighted Lebesgue space

L2
%̃(Ω) endowed with the scalar product < v, w >=

∫

Ω

vw %̃ dx,

see Wilcox [100]. Spectral properties of the operator A under various hypotheses
on the specific form of %̃ were studied by DeBièvre and Pravica [25], [26], among
others.

3.4 Incompressible limits in the framework of weak solu-
tions

As we observed in Section 3.2, the uniform bounds on the family of solutions
of the scaled system are provided by the total dissipation balance (3.7). Under
hypothesis of thermodynamic stability, the Helmholtz function H enjoys the
following coercivity properties:

H(%, ϑ)− ∂H(%̃, ϑ)
∂%

(%− %̃)−H(%̃, ϑ) ≥ c(K)
(
|%− %̃|2 + |ϑ− ϑ|2

)
(3.20)

for all (%, ϑ), (%̃, ϑ) belonging to a compact set K ⊂ (0,∞)2, whereas

H(%, ϑ)− ∂H(%̃, ϑ)
∂%

(%− %̃)−H(%̃, ϑ) ≥ c(K)
(
1 + %|s(%, ϑ)|+ %e(%, ϑ)

)
(3.21)

otherwise. This motivates a decomposition of each measurable function h =
h(t, x) as a sum of its essential part [h]ess and residual part [h]res, where

[h]ess = χ(%, ϑ)h, [h]res = (1− χ(%, ϑ))h,

χ ∈ C∞c (0,∞)2, 0 ≤ χ ≤ 1, χ ≡ 1 in an open neighborhood of (%̃, ϑ),

and %, ϑ are solutions of the scaled Navier-Stokes-Fourier system, cf. [41, Chap-
ter 4].

24



Now, let {%ε, ϑε, ~uε}ε>0 be a family of (weak) solutions to the scaled Navier-
Stokes-Fourier system, with Ma = ε. The total dissipation balance established
in (3.7) provides the following uniform bounds:

∥∥∥∥
[
%ε − %̃

ε

]

ess

(t, ·)
∥∥∥∥

L2(Ω)

+
∥∥∥∥
[
ϑε − ϑ

ε

]

ess

(t, ·)
∥∥∥∥

L2(Ω)

≤ c

‖[%εe(%ε, ϑε)]res (t, ·)‖L1(Ω) + ‖[%εs(%ε, ϑε)]res (t, ·)‖L1(Ω) ≤ ε2c,

and ∥∥%|~uε|2(t, ·)
∥∥

L1(Ω)
≤ c,

where the constants are independent of ε and t ∈ [0, T ]. Thus it is the essential
part of each quantity that contains the decisive piece of information necessary
for the limit process, while the residual component vanishes in the asymptotic
limit ε → 0.

Moreover, by the same token,

‖σε‖M([0,T ]×Ω ≤ ε2c. (3.22)

Quite remarkably, the entropy production rate σε, represented by a measure that
is, in general, very difficult to describe, disappears in the incompressible limit.
The ambiguous inequality sign in the entropy balance (3.3) becomes equality
in the incompressible limit, even if the equation may be scaled by 1/ε. This
remarkable feature of the low Mach number limits allows us to identify several
well-known systems in fluid mechanics as an incompressible limit of the full
Navier-Stokes-Fourier system using the framework of weak solutions.

Finally, as a byproduct of (3.22), we may infer that

∫ T

0

∫

Ω

(
|∇x~uε|2 +

∣∣∣∣
∇xϑε

ε

∣∣∣∣
)2

dx dt ≤ c, (3.23)

meaning, the diffusive terms provide certain compactness in the space variable
for ~uε and ϑε. As we have already observed in Section 3.3, compactness with
respect to the time variable is a more delicate issue, and, as a matter of fact,
fails in many cases of practical interest.

With help of the previous estimates, it is easy to check that

%ε → %̃ and ϑε → ϑ a.a. in (0, T )× Ω.

Note that pointwise (a.a.) convergence is enough to pass to the limit in all non-
linear terms appearing in the weak formulation of the Navier-Stokes-Fourier
system introduced in Section 2.4. Thus we can perform successfully the limit
passage as soon as we can established pointwise convergence of the velocities
{~uε}ε>0. However, as the velocity ~uε ≈ %ε~uε = ~Vε appears in the acoustic equa-
tion (3.11), (3.12), pointwise convergence may be spoiled by rapid oscillations
of the gradient component. The situation can be saved in three rather different
ways:
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• The main problem is to control the quadratic convective term divx(%ε~uε⊗
~uε) in the momentum equation. Fortunately, it can be shown that this
term may be written in the form

divx(%ε~uε ⊗ ~uε) = compact terms + a gradient.

Thus all possible oscillations are supported by the gradient term, and, as
the latter is irrelevant in the incompressible limit, the passage ε → 0 can
be accomplished. As a matter of fact, this argument works independently
of the boundary conditions imposed on ~uε, see Lions and Masmoudi [72],
[73], Masmoudi [79], [80].

• Taking well prepared initial data (cf. Section 3.2.1) we may achieve strong
convergence to zero of the gradient part of the velocity without much ef-
fort. However, the scope of possible applications becomes rather restricted.

• The problem is considered on an unbounded or sufficiently “large” domain,
the acoustic waves being eliminated locally by dispersion. We will discuss
the issue in the forthcoming section.

3.4.1 Remarks on two-scale convergence

Since solutions of the scaled acoustic equation on a bounded domain are expected
to develop fast time oscillations with the frequency proportional to 1/ε, it seems
natural to investigate the asymptotic behavior of solutions with respect to both
the real (slow) time t and the fast time τ = t/ε. To this end, the concept of two
scale convergence introduced by Allaire [4] and Nguetseng [86] can be adapted.
The limits characterizing the behavior of oscillating solutions are then described
in the spirit of the theory of homogenization. The reader may consult the review
paper by Visintin [99] for more information on the recent development of the
two-scale calculus.

3.5 Problems on large spatial domains

The influence of acoustic waves on the fluid motion close to the incompressible
regime is negligible, at least in most real world applications. The standard ar-
gument asserts that the underlying physical space is practically unbounded or,
more correctly, sufficiently large when compared to the sound speed in the ma-
terial in question, see Klein [59], [60]. If Ω = R3, the expected local decay of the
acoustic energy follows immediately from the dispersive estimates. Desjardins
and Grenier [28] exploited this idea combined with the non-trivial Strichartz
estimates for the acoustic equation in order to show strong (pointwise) conver-
gence of the velocity field in the low Mach number limit for a barotropic fluid
flow in the whole physical space R3. A similar approach was adapted in [43]
to the complete Navier-Stokes-Fourier system considered on “large” spatial do-
mains, on which the Strichartz estimates were replaced by global integrability of
the local energy established by Burq [16], Smith and Sogge [97]. Note that the
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concept of the so-called radiation boundary conditions, amply used in numerical
analysis, is based on the same physical principle, see Engquist and Majda [35].

In contrast with the simple geometry of the whole space R3, where the ef-
ficient mathematical methods based on Fourier analysis are at hand, any real
problem of wave propagation inevitably includes the influence of the boundary
representing a rigid wall in the physical space. As is well-known, the Strichartz
estimates become much more delicate and usually require severe geometrical
restrictions to be imposed on the boundary. For instance, if the fluid domain is
exterior to a compact obstacle, the latter must be starshaped or at least non-
trapping, see Burq [16], Metcalfe [82], Smith and Sogge [97]), and the references
cited therein. In what follows, we propose a simple and rather versatile method
to study the local decay of acoustic waves based on the celebrated RAGE theo-
rem and a result of Kato [56].

3.5.1 Reduction to unbounded domains

All available results concerning local decay of acoustic waves hold on unbounded
spatial domains. On the other hand, as we observed in Section 3.3.1, the acoustic
equation admits a finite speed of propagation proportional to the 1/ε, where ε
is the Mach number. As we are interested in local decay of the acoustic energy,
we can therefore assume that the physical space depends on ε in such a way
that

Ω = Ωε ⊃ (Ω ∩Brε), where Brε = {x | |x| ≤ rε}
εrε →∞ as ε → 0.

Accordingly, since the acoustic waves are considered on a compact space-time
cylinder [0, T ] ×K, K ⊂ Ω, we may assume that solutions are defined on the
(unbounded) domain Ω.

3.5.2 RAGE theorem

Recalling Duhamel’s formula (3.19) we claim that a necessary condition for
the local energy decay of acoustic waves represented by the potential Φ is the
absence of eigenvalues of the operator −∆N in Ω. RAGE theorem will tell us
that this condition is also sufficient provided the bounded operator

v 7→ χG(−∆N )[v] : L2(Ω) → L2(Ω) is absolutely continuous

for
χ ∈ C∞c (Ω), G ∈ C∞c (0,∞).

Clearly to see that, it is enough to observe that D(−∆N ) consists of functions
that possess two generalized derivatives locally integrable in Ω.

The celebrated RAGE theorem (see Cycon et al. [22, Theorem 5.8]) reads
as follows:
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Theorem 3.1 Let H be a Hilbert space, A : D(A) ⊂ H → H a self-adjoint
operator, C : H → H a compact operator, and Pc the orthogonal projection
onto the space of continuity Hc of A, specifically,

H = Hc ⊕ clH
{

span{w ∈ H | w an eigenvector of A}
}

.

Then
∥∥∥∥

1
τ

∫ τ

0

exp(−itA)CPc exp(itA) dt

∥∥∥∥
L(H)

→ 0 as τ →∞. (3.24)

Interesting generalizations of this result to Banach spaces were obtained by
Kreulich [63]. Theorem 3.1 will be applied to the solution group exp(i

√−ω∆N t),
associated to the acoustic equation. As already pointed, the result is optimal
as it requires only that Hc = H, meaning, the absence of eigenvalues of the
acoustic generator.

Our aim is to apply Theorem 3.1 to H = L2(Ω), A =
√−ω∆N , C =

χ2G(−∆N ), with χ ∈ C∞c (Ω), χ ≥ 0, G ∈ C∞c (0,∞), 0 ≤ G ≤ 1. Taking
τ = 1/ε in (3.24) we obtain

∫ T

0

〈
exp

(
−i

t

ε

√
−ω∆N

)
χ2G(−∆N ) exp

(
i
t

ε

√
−ω∆N

)
X;Y

〉
dt

≤ ζ(ε)‖X‖L2(Ω)‖Y ‖L2(Ω),

where ζ(ε) → 0 as ε → 0. Thus for Y = G(−∆N )[X] we deduce that
∫ T

0

∥∥∥∥χG(−∆N ) exp
(

i
√
−ω∆N

t

ε

)
[X]

∥∥∥∥
2

L2(Ω)

dt (3.25)

≤ ζ(ε)‖X‖2L2(Ω) for any X ∈ L2(Ω), ζ(ε) → 0 as ε → 0.

Similarly, the integrals in (3.19) can be handled as follows:
∥∥∥∥∥χ

∫ T

0

G(−∆N ) exp
(

i
t− s

ε

√
−ω∆N

)
[Y (s)] ds

∥∥∥∥∥

2

L2((0,T )×Ω)

= (3.26)

∫ T

0




∥∥∥∥∥
∫ T

0

χG(−∆N ) exp
(

i
t− s

ε

√
−ω∆N

)
[Y (s)] ds

∥∥∥∥∥

2

L2(Ω)


 dt

≤
∫ T

0

∫ T

0

∥∥∥∥χG(−∆N ) exp
(

i
t− s

ε

√
−ω∆N

)
[Y (s)]

∥∥∥∥
2

L2(Ω)

dt ds

≤ ζ(ε)
∫ T

0

∥∥∥exp
(
−i

s

ε

√
−ω∆N

)
[Y (s)]

∥∥∥
2

L2(Ω)
ds = ζ(ε)

∫ T

0

‖Y (s)‖2L2(Ω) ds.

The above estimates provide decay in L2((0, T ) × K) of the projection of
the acoustic potential on a compact part of the spectrum of −∆N . However,
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as the velocity gradient is bounded in L2((0, T ) × Ω) (see (3.23)), this piece of
information is sufficient to establish the desired decay ∇xΦ → 0 in L2((0, T )×
K;R3), see [40].

The method based on RAGE theorem is rather simple but does not provide
any qualitative information on the rate of the local decay determined by the
function ζ. By the same token, the method is rather unstable with respect to
possible small perturbations of the physical boundary. In the following section,
we propose another method based on an abstract result of Kato [56].

3.5.3 Kato’s theorem

An alternative method to study the local decay of acoustic waves is based on
an abstract result of Kato [56] (see also Burq et al. [17], Reed and Simon [89,
Theorem XIII.25 and Corollary]):

Theorem 3.2 Let C be a closed densely defined linear operator and A a self-
adjoint densely defined linear operator in a Hilbert space H. For λ /∈ R, let
RA[λ] = (A− λId)−1 denote the resolvent of A. Suppose that

Γ = sup
λ/∈R, v∈D(C∗), ‖v‖H=1

‖C ◦RA[λ] ◦ C∗[v]‖H < ∞. (3.27)

Then
sup

w∈X, ‖w‖H=1

π

2

∫ ∞

−∞
‖C exp(−itA)[w]‖2X dt ≤ Γ2.

Similarly to the preceding part, we take H = L2(Ω), A =
√−ω∆N , and

C[v] = χG(−∆N )[v], χ ∈ C∞c (Ω), G ∈ C∞c (0,∞).

Taking, for a moment, the conclusion of Theorem 3.2 for granted, we obtain
∫ T

0

∥∥∥∥χG(−∆N ) exp
(

i
√
−ω∆N

t

ε

)
[X]

∥∥∥∥
2

L2(Ω)

dt (3.28)

≤ ε

∫ ∞

−∞

∥∥∥χG(−∆N ) exp
(
i
√
−ω∆N t

)
[X]

∥∥∥
2

L2(Ω)
dt ≤ εΓ2‖X‖2L2(Ω).

Consequently, Kato’s theorem yields the same conclusion as RAGE theorem,
with a specific decay rate ζ(ε) = εΓ2. In addition, Kato’s result does not
require compactness of the operator C.

It remains to clarify the meaning of hypothesis (3.27). In the present setting,
we have

C ◦ 1
A− λI

◦ C∗ = χG(−∆N )
1√−ω∆N − λ

G(−∆N )χ;

whence, for G given, it is enough to consider λ in a bounded rectangle

0 < α ≤ Re[λ] ≤ β < ∞, 0 < |Im[λ]| < δ. (3.29)
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Furthermore, we have

χG(−∆N )
1√−ω∆N − λ

G(−∆N )χ = χ
1

(−ω∆N )− λ2
M(λ,−∆N )χ,

where we have set

M(λ,−∆N ) = G2(−∆N )((−ω∆N ) + λ).

The operator −∆N satisfies the limiting absorption principle (see Eidus [33],
Leis [66, Chapter 4.6], Vainberg [98, Chapter VIII.2]), specifically,

sup
µ∈C;α<Re[µ]<β;Im[µ]6=0

∥∥∥∥V ◦
1

(−∆N )− µ
◦ V

∥∥∥∥
L[L2(Ω);L2(Ω)]

≤ c(α, β, ϕ) < ∞
(3.30)

for any choice of 0 < α < β < ∞,

V(x) = (1 + |x|2)− s
2 , s > 1,

provided Ω is an exterior domain. Thus hypothesis (3.27) will be satisfied
provided (i) the operator (−∆N ) satisfies the limiting absorption principle, and
(ii) ∥∥V−1 ◦M(λ,−∆N ) ◦ χ

∥∥
L[L2(Ω);L2(Ω)]

≤ c (3.31)

for any λ belonging to the set (3.29).
In order to see (3.31), we follow Isozaki [55] writing

M(λ,−∆N ) = H(
√
−∆N ) =

∫ ∞

−∞
exp

(
i
√
−∆N t

)
H̃(t) dt, (3.32)

where H̃ is the Fourier transform of H. On the other hand,
∥∥∥(1 + |x|2)s/2 exp

(
i
√
−∆N t

)
[χg]

∥∥∥
2

L2(Ω)

=
∫

Ω

(1 + |x|2)s
∣∣∣ exp

(
i
√
−∆N t

)
[χg]

∣∣∣
2

dx.

However, since w = exp
(
i
√−∆N t

)
[χg] solves the wave equation

∂2
t w −∆Nw = 0

admitting a finite speed of propagation of order 1, we have
∫

Ω

(1 + |x|2)s
∣∣∣ exp

(
i
√
−∆N t

)
[χg]

∣∣∣
2

dx

=
∫

|x|≤t+r

(1 + |x|2)s
∣∣∣ exp

(
i
√
−∆N t

)
[χg]

∣∣∣
2

dx,
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where r is the radius of support of χ. Thus we may infer that
∫

|x|≤r+t

(1 + |x|2)s
∣∣∣ exp

(
i
√
−∆N t

)
[χg]

∣∣∣
2

dx

≤ c(1 + t2s)
∥∥∥ exp

(
i
√
−∆N t

)
[χg]

∥∥∥
2

L2(Ω)
,

which, together with (3.32), yields (3.31).
Thus validity of hypothesis (3.27) depends essentially on two factors:

• The speed of propagation in the (unscaled) acoustic equations.

• The limiting absorption principle (LAP). Several extensions of LAP to
other classes of unbounded domains and more general elliptic operators
are available, see Dermenjian and Guillot [27], Shimizu [95], among others.

3.6 Rescaled boundary conditions

A proper choice of boundary conditions plays an important role in fluid me-
chanics, cf. Section 2.3.5. This issue have been subjected to discussion for over
two centuries by many distinguished scientists who developed the foundations of
fluid mechanics, including Bernoulli, Coulomb, Navier, Couette, Poisson, Stokes,
to mention only a few significant names. The commonly accepted hypothesis
asserts that there is no relative motion between a viscous fluid, described by a
velocity field ~u and the solid wall ∂Ω, meaning,

[~u]tangential|∂Ω = 0,

and
~u · ~n|∂Ω = 0,

provided the wall is impermeable. These so-called no-slip boundary condition
turned out to be extremely successful in reproducing the velocity profiles for
macroscopic flows, in particular for incompressible fluids (liquids).

On the other hand, Navier suggested to replace the no-slip conditions by a
hypothesis that

β[~u]tangential + [S~n]tangential = 0 on ∂Ω, (3.33)

discussed in Section 2.3.5. In the presence of slip, the fluid motion is opposed
by a force proportional to the relative velocity between the fluid and the solid
wall. Hypothesis (3.33) may be viewed as a convenient alternative to the no-
slip condition whenever the rate of flow is sufficiently strong (turbulent regimes)
and the medium is a compressible gas of low viscosity, typical for meteorological
models.

Adopting (3.33) as a suitable condition for compressible viscous fluids, we
may perform the incompressible limit taking the friction coefficient inversely
proportional to a certain power of the Mach number, specifically,

[~u]tangential + εα[S~n]tangential = 0 on ∂Ω, α > 0.
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Accordingly, the no-slip boundary condition

~u|∂Ω = 0

may be recovered in the incompressible limit as expected. Of course, the param-
eter α > 0 must be chosen sufficiently small not to spoil the analysis of acoustic
waves discussed in the preceding section.

Similarly, we can impose a “friction” force directly, adding a term propor-
tional to

1
εα

1K%~u

as a driving force in the momentum equation (2.35), where K ⊂ Ω is a closed
set. Accordingly, the fluid motion vanishes on the set K in the asymptotic limit.

4 Applications

The last section presents a sample of well-established mathematical models that
can be identified as incompressible limits of the full Navier-Stokes-Fourier sys-
tem by means of the methods specified in the preceding part of this paper.

4.1 Oberbeck-Boussinesq approximation

One of the simplest ways to filter acoustic waves from the equations govern-
ing fluid motion is through the Oberbeck-Boussinesq approximation (OBA) (see
Boussinesq [14], Oberbeck [87]), which is widely used to facilitate both theoret-
ical analysis and numerical computation, see Zeytounian [102]. Very roughly
indeed, we may say that the mechanical fluid properties in (OBA) are assumed
to be temperature independent, apart from the density for which a linear tem-
perature dependence is assumed. The thermal conductivity, viscosity, specific
heat remain constant while the density is allowed to vary linearly with temper-
ature in the term representing buoyancy.

The Oberbeck-Boussinesq approximation reads:

divx
~U = 0, (4.1)

%
(
∂t

~U + divx(~U ⊗ ~U)
)

+∇xΠ = µ∆~U + r∇xF, (4.2)

%cp(%, ϑ)
[
∂tΘ + divx(Θ~U)

]
− κ∆Θ− %ϑα(%, ϑ)divx(F ~U) = 0, (4.3)

where we have set

α(%, ϑ) = 1
%

∂ϑp(%,ϑ)

∂%p(%,ϑ)
coefficient of thermal expansion,

cp(%, ϑ) = ∂ϑe(%, ϑ) + α(%, ϑ)ϑ
% ∂ϑp(%, ϑ) specific heat at constant pressure.
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Finally, r and Θ are interrelated through Boussinesq equation

r + %α(%, ϑ)Θ = 0. (4.4)

The fluid is incompressible moving with velocity ~U , the symbol Θ denotes a
small deviation of the temperature from its reference value ϑ, and ∇xF repre-
sents the gravitational force acting on the fluid. Typically,

−∆F = d,

where d denotes the mass density of the hard core( the Earth or a star) located
outside the fluid domain Ω. Accordingly, the potential F is harmonic in Ω, and
equation (4.3) may be rewritten in terms of a new variable

Θ ≈ Θ− ϑα(%, ϑ)
cp(%, ϑ)

F.

Oberbeck-Boussinesq system can be rigorously justified as a singular limit
of the scaled Navier-Stokes-Fourier system (3.1 - 3.5) provided Ma = ε, Fr =√

ε, with the remaining characteristic numbers of order 1. More specifically, if
{%ε, ϑε, ~uε} is a family of solutions to the scaled system, then

%ε − %̃ε

ε
→ r,

ϑε − ϑ

ε
→ Θ

and
~uε → ~U as ε → 0,

where %̃ε are solutions of the scaled static equation

∇xp(%̃ε, ϑ) = ε%̃ε∇xF in Ω,

see [41, Chapter 5]. Convergence takes place in different topologies, depending
on the geometry of the domain and a particular choice of the initial data.

It may seem that Oberbeck-Boussinesq system “leaks” energy. Indeed, set-
ting all parameters to be one and assuming insulating boundary conditions, we
derive easily the total “energy balance” in the form

d
dt

∫

Ω

1
2

(
|~U |2 + |Θ|2

)
dx +

∫

Ω

(
µ|∇x

~U |2 + κ|∇xΘ|2
)

dx = 0.

However, we have to keep in mind that Θ should be interpreted as a deviation
from an equilibrium temperature rather than the temperature itself.

4.2 Anelastic approximation

There are numerous applications of mathematical fluid dynamics motivated by
problems arising in astrophysics. However, investigations in this field are ham-
pered by both theoretical and observational problems. The vast range of differ-
ent scales that extend in the case of stars from the stellar radius to 102 m or
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even less entirely prevents a complex numerical as well as analytical solution.
Progress in this field therefore calls for a combination of physical intuition with
rigorous analysis of highly simplified mathematical models.

A typical example is the flow dynamics observed in stellar radiative zones
that represents a major challenge of the current theory of stellar interiors. Under
these circumstances, the fluid behaves as a plasma characterized by the following
features:

• A strong radiative transport predominates the molecular one. This is
due to extremely hot and energetic radiation fields prevailing the plasma.
Accordingly, the Péclet number Pe is vanishingly small.

• Strong stratification effects prevail because of the enormous gravitational
potential of gaseous celestial bodies.

• The convective motions are much slower than the speed of sound; whence
the Mach number Ma is small. The fluid is therefore almost incompressible,
whereas the density variations can be simulated via a so-called anelastic
approximation, see Gilman and Glatzmaier [47], [48], Gough [51], Lipps
and Hemler [74].

Chandrasekhar [20] proposed a simple alternative to Oberbeck-Boussinesq
approximation discussed in the previous section in the case when both Froude
and Péclet numbers are small. More recently, Ligniéres [70] identified a similar
system as a suitable model of flow dynamics in stellar radiative zones. The
system consists of the following equations:

• hydrostatic balance equation

∇xp(%̃, ϑ) = %̃∇xF ;

• anelastic constraint
divx(%̃~U) = 0

• balance of linear momentum

∂t(%̃~U) + divx(%̃~U ⊗ ~U) + %̃∇xΠ

= µdivx

(
∇x

~U +∇x
~U t − 2

3
divx

~UI
)

+ η∇xdivx
~U − Θ

ϑ
%̃∇xF,

where Θ and ~U are interrelated through

%̃∇xF · ~U + κ(ϑ)∆Θ = 0.

The system can be identified as a singular limit of the complete Navier-
Stokes-Fourier system, with Ma = Fr = ε, Pe = ε2. Specifically,

%ε → %̃, ~uε → ~U,

34



and
ϑε − ϑ

ε2
→ Θ

as ε → 0, see [41, Chapter 6] for the proof in special geometries.
The anelastic approximation possesses essentially the same structure as the

standard incompressible Navier-Stokes system, however, the number of theoreti-
cal studies devoted to this model is considerably lower. Besides other interesting
new features, mathematical analysis of the problem requires a modification of
the standard Helmholtz decomposition in the form

~v = ~H%̃[~v] + %̃∇xΦ,

where
divx(%̃∇xΦ) = divx~v in Ω, %̃∇xΦ · ~n = ~v · ~n on ∂Ω.

Moreover, as pointed out in Section 3.3.3, the propagation of sound is governed
by a modified wave equation with variable sound speed.

Numerous examples of models of fluids under stratification can be found in
Majda’s monograph [77].

5 Conclusion

We have surveyed some recent results on scale analysis of the full Navier-Stokes-
Fourier system endowed with conservative boundary conditions. Our approach
was based on the concept of weak solutions in the spirit of Leray [67] and
P.-L.Lions [71], developed in the context of complete fluid systems in the mono-
graphs [39], [41]. Although the class of solutions seems very general, in partic-
ular, in view of very mild restrictions imposed on the entropy production rate,
we have seen that the theory is sufficiently robust with respect to various kinds
of singular limits. In contrast with the more standard approach, based on the
concept of strong solutions (see Klainerman and Majda [57], [58]), the present
framework does not impose any essential restrictions on the size of the data and
the length of the relevant time interval. This property is useful when study-
ing real world applications and their numerical analysis. Of course, we focused
on several particular problems and left apart many other interesting aspects of
this area of continuum fluid mechanics. In particular, it is interesting to note
apparent similarity with the arguments used in the passage between discrete
(kinetic) and continuous fluid models, see Bardos et al. [7], [8], [9], Golse and
Saint-Raymond [49], [50].

The major drawback of the method is its dependence on the standard energy
estimates for the Navier-Stokes system based on the control of the entropy
production rate in the whole process of incompressible limits. In particular, the
initial distribution of both the density and the temperature must be close to
the (global) equilibrium state. There are several interesting problems arising
in low Mach number combustion, where the variations of the temperature and
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the density are arbitrary and only the pressure remains close to a constant, see
Majda [76], Majda and Sethian [78].

Last but not least, we ignored completely in this study the enormous amount
of results concerning the inviscid inviscid fluid modeled by the Euler system.
The interested reader may consult the seminal paper by Klainerman and Majda
[57], as well as the later studies by Métivier and Schochet [83], [84], Schochet
[91], [92], and the references therein.
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[42] E. Feireisl and H. Petzeltová. On the zero-velocity-limit solutions to the
Navier-Stokes equations of compressible flow. Manuscr. Math., 97:109–
116, 1998.

[43] E. Feireisl and L. Poul. On compactness of the velicity field in the incom-
pressible limit of the full Navier-Stokes-Fourier system on large domains.
Math. Meth. Appl. Sci., 32: 1269–1286, 2009.
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