110 research outputs found

    Allocation of environmental goods; an analysis of emission trading

    Get PDF

    Allocation of environmental goods; an analysis of emission trading

    Get PDF

    Multi-experiment assessment of soil nitrous oxide emissions in sugarcane

    Get PDF
    Soil nitrous oxide (N 2O) fluxes comprise a significant part of the greenhouse gas emissions of agricultural products but are spatially and tempo-rally variable, due to complex interactions between climate, soil and management variables. This study aimed to identify the main factors that affect N2Oemissions under sugarcane, using a multi-site data-base from field experiments. Greenhouse gas fluxes, soil, climate, and management data were obtained from 13 field trials spanning the 2011–2017 period. We conducted exploratory, descriptive and inferential data analyses in experiments with varying fertiliser and stillage (vinasse) type and rate, and crop residue rates. The most relevant period of high N2O fluxes was the first 46 days after fertiliser application. The results indicate a strong positive correlation of cumulative N2O with nitrogen (N) fertiliser rate, soil fungi community (18S rRNA gene), soil ammonium(NH 4+ ) and nitrate (NO3−); and a moderate negative correlation with amoA genes of ammonia-oxidising archaea (AOA) and soil organic matter content. The regression analysis revealed that easily routinely measured climate and management-related variables explained over 50% of the variation in cumulativeN2O emissions, and that additional soil chemical and physical parameters improved the regression fit within R2 = 0.65. Cross-wavelet analysis indicated significant correlations of N2O fluxes with rainfall and air temperature up to 64 days, associated with temporal lags of 2 to 4 days in some experiments, and presenting a good environmental control over fluxes in general. The nitrogen fertiliser mean emission factors ranged from 0.03 to 1.17% of N applied, with urea and ammonium nitrate plus vinasse producing high emissions, while ammonium sulphate, ammonium nitrate without vinasse, calcium nitrate, and mitigation alternatives (nitrification inhibitors and timing of vinasse application) producing low N2O-EFs. Measurements from multiple sites spanning several crop-ping seasons were useful for exploring the influence of environmental and management-related variables on soil N 2O emissions in sugarcane production, providing support for global warming mitigation strategies, nitrogen management policies, and increased agricultural input efficiency

    An Investigation of the Role of Macular Pigment in Attenuating Photostress through Comparison between Blue and Green Photostress Recovery Times

    Get PDF
    Purpose: Photostress recovery time (PSRT) is the time required for the macula to return to its normal functioning after the bleaching of cone photopigments due to light exposure, usually white. This work investigates the role of macular pigment (MP) as an optical filter that attenuates photostress by analyses of PSRT at different wavelengths. Methods: Thirty-nine subjects (19–28 years) were exposed to blue/green photostress varying in irradiance. During photostress, pupil constriction (Cp) was measured. Twenty-seven subjects (20–27 years) were exposed to white photostress. After 25 s of photostress, the time (PSRT) required to read correctly a 0.2 logMAR letter was measured. Correlation was studied between PSRT, CP, and irradiance. Statistical significance of differences between PSRTs was evaluated at Log(irradiance(quanta s−1 cm−2)) = 14 by Student’s t statistics. Results: Cp and PSRT were found linearly correlated to Log(irradiance) for blue, green, and white. At Log(irradiance(quanta s−1 cm−2)) = 14, blue and green mean PSRTs resulted different (p 0.05). Conclusions: MP plays the role of an optical filter attenuating photostress. PSRT was substantially proportional to the number of incident photons corrected for the MP optical absorption, regardless of their wavelength

    Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An evaluation using the JULES model, in situ observations, and remote sensing

    Get PDF
    Soil moisture information is essential to monitoring of the intensity of droughts, the start of the rainy season, planting dates and early warnings of yield losses. We assess spatial and temporal trends of drought over the Brazilian semiarid region by combining soil moisture observations from 360 stations, root zone soil moisture from a leading land surface model, and a vegetation health index from remote sensing. The soil moisture dataset was obtained from the network of stations maintained by the National Center of Monitoring and Early Warning of Natural Disasters (Cemaden), in Brazil. Soil water content at 10 to 35 cm depth, for the period 1979–2018, was obtained from running the JULES land surface model (the Joint UK Land Environment Simulator). The modelled soil moisture was correlated with measurements in the common period of 2015–2018, resulting in an average correlation coefficient of 0.48 across the domain. The standardized soil moisture anomaly (SMA) was calculated for the long-term modelled soil moisture and revealed strong negative values during well-known drought periods in the region, especially during El-Niño years. The performance of SMA in identifying droughts during the first 2 months of the raining and cropping season was similar to the Standardized Precipitation Index (SPI), commonly used for drought assessment: 12–14 events were identified by both indices. Finally, the temporal relationship between both SMA and SPI with the Vegetation Health Index (VHI) was assessed using the cross-wavelet transform. The results indicated lagged correlations of 1 to 1.5 months in the annual scale, suggesting that negative trends in SMA and SPI can be an early warning to yield losses during the growing season. Public policies on drought assessment should consider the combination of multiple drought indices, including soil moisture anomaly

    Assessment of the environmental status in Hellenic coastal waters (Eastern Mediterranean): from the Water Framework Directive to the Marine Strategy Water Framework Directive.

    Get PDF
    A  methodology is presented to assess the environmental status sensu the Marine Strategy Water Framework Directive (MSFD) based on data obtained from the monitoring of water quality in the Hellenic coastal waters within the Water Framework Directive (WFD).   An adapted decision tree used for integrating the results of the WFD in the Basque country was applied. Modifications lie to the evaluation of the physicochemical status based on a eutrophication index developed for Eastern Mediterranean waters. Results on hydromorphological, physicochemical and biological elements are presented. The chemical status was evaluated based on measurements of heavy metals in water. The evaluation of the biological quality was based on the use of metrics developed for phytoplankton biomass, benthic macroinvertebrates and macroalgae updated to accommodate MSFD needs. Results on the integrative status of the water bodies were validated by correlating classification results with a pressure index and environmental indicators in water column and sediment. Following this decision tree the majority of stations expected to be at risk of achieving the good status were found in moderate status. Benthos was found to be the element with the closest agreement with the integrated final status having an increased weighting in the decision tree. The quality of benthos and in some  limited cases  the eutrophication index determined largely the final status. The highest disagreement with the integrative classification was produced by macroalgae. All indicators used correlated with water and sediment parameters but benthos correlated better with sediment factors while phytoplankton and eutrophication index with water column parameters

    Recommendations and Standardization of Biomarker Quantification Using NMR-Based Metabolomics with Particular Focus on Urinary Analysis

    Get PDF
    [Image: see text] NMR-based metabolomics has shown considerable promise in disease diagnosis and biomarker discovery because it allows one to nondestructively identify and quantify large numbers of novel metabolite biomarkers in both biofluids and tissues. Precise metabolite quantification is a prerequisite to move any chemical biomarker or biomarker panel from the lab to the clinic. Among the biofluids commonly used for disease diagnosis and prognosis, urine has several advantages. It is abundant, sterile, and easily obtained, needs little sample preparation, and does not require invasive medical procedures for collection. Furthermore, urine captures and concentrates many “unwanted” or “undesirable” compounds throughout the body, providing a rich source of potentially useful disease biomarkers; however, incredible variation in urine chemical concentrations makes analysis of urine and identification of useful urinary biomarkers by NMR challenging. We discuss a number of the most significant issues regarding NMR-based urinary metabolomics with specific emphasis on metabolite quantification for disease biomarker applications and propose data collection and instrumental recommendations regarding NMR pulse sequences, acceptable acquisition parameter ranges, relaxation effects on quantitation, proper handling of instrumental differences, sample preparation, and biomarker assessment

    Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis

    Get PDF
    ABSTRACT: BACKGROUND: Iron involvement/imbalance is strongly suspected in multiple sclerosis (MS) etiopathogenesis, but its role is quite debated. Iron deposits encircle the veins in brain MS lesions, increasing local metal concentrations in brain parenchyma as documented by magnetic resonance imaging and histochemical studies. Conversely, systemic iron overload is not always observed. We explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes in MS patients. METHODS: By the pyrosequencing technique, we investigated 414 MS cases [Relapsing-remitting (RR), n=273; Progressive, n=141, of which: Secondary (SP), n=103 and Primary (PP), n=38], and 414 matched healthy controls. Five SNPs in 4 genes were assessed: hemochromatosis (HFE: C282Y, H63D), ferroportin (FPN1: -8CG), hepcidin (HEPC: -582AG), and transferrin (TF: P570S). RESULTS: The FPN1-8GG genotype was overrepresented in the whole MS population (OR=4.38; 95%CI, 1.89-10.1; P<0.0001) and a similar risk was found among patients with progressive forms. Conversely, the HEPC -582GG genotype was overrepresented only in progressive forms (OR=2.53; 95%CI, 1.34-4.78; P=0.006) so that SP and PP versus RR yielded significant outputs (P=0.009). For almost all SNPs, MS disability score (EDSS), severity score (MSSS), as well as progression index (PI) showed a significant increase when comparing homozygotes versus individuals carrying other genotypes: HEPC -582GG (EDSS, 4.24+/-2.87 vs 2.78+/-2.1; P=0.003; MSSS, 5.6+/-3.06 vs 3.79+/-2.6; P=0.001); FPN1-8GG (PI, 1.11+/-2.01 vs 0.6+/-1.31; P=0.01; MSSS, 5.08+/-2.98 vs 3.85+/-2.8; P=0.01); HFE 63DD (PI, 1.63+/-2.6 vs 0.6+/-0.86; P=0.009). Finally, HEPC -582G-carriers had a significantly higher chance to switch into the progressive form (HR=3.55; 1.83-6.84; log-rank P=0.00006). CONCLUSIONS: Polymorphisms in the genes coding for iron binding and transporting proteins, in the presence of local iron overload, might be responsible for suboptimal iron handling. This might account for the significant variability peculiar to MS phenotypes, particularly affecting MS risk and progression paving the way for personalized pharmacogenetic applications in the clinical practice

    Symmetry-Resolved CO Desorption and Oxidation Dynamics on O/Ru(0001) Probed at the C K-edge by Ultrafast X-Ray Spectroscopy

    Get PDF
    We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10−8 Torr) and O2 (3 × 10−8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10−8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC–O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward “gas-like” CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole–dipole interaction while simultaneously increasing the CO oxidation barrier
    corecore