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Abstract
Soil moisture information is essential to monitoring of the intensity of droughts,
the start of the rainy season, planting dates and early warnings of yield losses.
We assess spatial and temporal trends of drought over the Brazilian semiarid
region by combining soil moisture observations from 360 stations, root zone soil
moisture from a leading land surface model, and a vegetation health index from
remote sensing. The soil moisture dataset was obtained from the network of sta-
tions maintained by the National Center of Monitoring and Early Warning of
Natural Disasters (Cemaden), in Brazil. Soil water content at 10 to 35 cm depth,
for the period 1979–2018, was obtained from running the JULES land surface
model (the Joint UK Land Environment Simulator). The modelled soil moisture
was correlated with measurements in the common period of 2015–2018, result-
ing in an average correlation coefficient of 0.48 across the domain. The standard-
ized soil moisture anomaly (SMA)was calculated for the long-termmodelled soil
moisture and revealed strong negative values during well-known drought peri-
ods in the region, especially during El-Niño years. The performance of SMA in
identifying droughts during the first 2 months of the raining and cropping sea-
son was similar to the Standardized Precipitation Index (SPI), commonly used
for drought assessment: 12–14 events were identified by both indices. Finally, the
temporal relationship between both SMA and SPI with the Vegetation Health
Index (VHI) was assessed using the cross-wavelet transform. The results indi-
cated lagged correlations of 1 to 1.5 months in the annual scale, suggesting that
negative trends in SMA and SPI can be an early warning to yield losses during
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the growing season. Public policies on drought assessment should consider the
combination of multiple drought indices, including soil moisture anomaly.
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1 INTRODUCTION

Drought is a natural disaster characterized by a slow onset
and evolution (Marthews et al., 2019;Mishra&Singh, 2010;
van Loon, 2015). The impacts of droughts are experienced
in several societal sectors and activities, such as agricul-
ture, water supply, food security, tourism and energy gen-
eration (Mishra & Singh, 2010). Droughts can be recurrent
in specific regions of the world, but every event has unique
characteristics regarding the duration and intensity. The
influence of climate on drought occurrence and recurrence
is currently an uncertain issue considering the spatial and
temporal variabilities caused by climate change (Trenberth
et al., 2014). Therefore, monitoring of drought conditions
is a crucial and timely task, which is essential to mitigate
the impacts of recurrent and unexpected events (Wilhite,
2018). For this reason, the improvement of existing drought
monitoring tools and testing of new approaches should be
carried out continuously (Svoboda & Fuchs, 2017).
The Brazilian semiarid region (Figure 1) is subject to

frequent droughts, with famine and migrations associated
with events since the 18th century (De Alcântara Silva
et al., 2013; Gonçalves, 2000; Rossato et al., 2017). The
region covers approximately 18% of the territory of Brazil
and has 22 million inhabitants (IBGE, 2019a). Droughts in
the region are typically assumed to be linked to El Niño
events; however, the period 2012 to 2018 was character-
ized by strong annual droughts which were not associ-
ated with El Niño, except 2015/2016 (Cunha et al., 2019; de
Souza et al., 2005; Hastenrath & Heller, 1977; Pezzi & Cav-
alcanti, 2001). In addition, due to the region’s latitudinal
extent, drought events affect different parts of the domain
with varying degrees of severity. According to reports on
the history of droughts in the region, the spatial patterns
of drought impacts is not always the same and has been
changing in recent years, with stronger trends towards
drier conditions (Cunha et al., 2018; Tomasella et al., 2018).
Drought is the main manifestation of climate change

and variability in the semiarid region of northeast Brazil,
which dramatically affects its rural and poor population
(Simões et al., 2010). There are numerous risks and vulner-
abilities brought about by droughts, besides water scarcity:
decreased agricultural productivity, loss of income of rural
population, risk of food insecurity and breakdown of food

systems, impaired ecosystem diversity, with all that conse-
quently influencing social and economic development and
impacting on human health, particularly to poorer popu-
lations in urban and rural settings (FAO, 2017; Holmgren
et al., 2006; Sena et al., 2018).
In this context, policymakers have to go beyond strate-

gies that not only increase agricultural productivity but
also integrate measures to mitigate the risks arising from
climate variability and improve conditions for rural pros-
perity and poverty eradication (Hansen et al., 2019), as well
as adaptation initiatives to support local populations to
dealwith drought risks in the future. According to Farinelli
et al. (2017), the legal framework for drought manage-
ment in the Brazilian semiarid region must include spe-
cific mitigation actions (adoption of sustainable agricul-
tural practices and infrastructure for water management,
for instance) and social protection programs (guaranteed
minimum income, education, and health care). Unfor-
tunately, governmental responses have historically been
reactive other than proactive, that is, more focused on
crisis management approach than on preparedness and
drought risk reduction (Magalhaes, 2017; Wilhite et al.,
2014).
In 2002, Brazil instituted the Garantia Safra ben-

efit (Law number 10.420/2002), in the scope of the
National Program for Strengthening Family Farming—
PRONAF (Decree number 1.946/1996). The Garantia-Safra
is an income insurance linked to agricultural production
and targets poor and vulnerable smallholder farmers in
drought-prone region, mostly in the northeast Brazil (Mil-
horance et al., 2020). Besides ensuring financial security
for family farmers in the cultures they traditionally pro-
duce (basically cotton, rice, cassava, beans, and corn—the
most traditional crops in the region), the program aims
at promoting other feasible activities, such as the adop-
tion of crops resistant to water shortage (Alves, 2009). The
Garantia-Safra has limited action, as it lacks a preventive
function and fails as an instrument to build farmersť long-
term resilience and fight poverty that characterizes the
region (Kühne, 2020).
Eligibility for the Garantia-Safra benefit includes (i) be

a family farmer by meeting the PRONAF criteria, (ii)
have a monthly family income of a maximum of 1.5 min-
imum wage, and (iii) plant between 0.6 to 5.0 hectares
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F IGURE 1 (a) Brazil and semiarid region (blue); (b) soil moisture measurement sites over the Brazilian semiarid region (blue contour);
(c) grid points from the JULES model

of beans, corn, rice, cotton, and/or cassava. Additionally,
there are verification instruments to assess the occurrence
of drought and crop failure; such instruments encompass
reports on on-site surveys, rainfall anomalies, and drought
indices (MAPA, 2020). However, no information on soil
moisture is currently used for the crop losses verification.
Drought can be monitored in several ways by mak-

ing use of in situ sensors, via satellite products or using
land surface models of water balance (Alvalá et al., 2019;
Cunha et al., 2015; Zeri et al., 2018). Hybrid approaches
make use ofmeasurements to validatemodels of water bal-
ance (Cammalleri et al., 2015; Souza et al., 2021). A com-
bined index making use of vegetation conditions (remote
sensing), soil moisture (land surface model), and rainfall
anomalies is used to estimate drought conditions inEurope
(Carrão et al., 2016; Sepulcre-Canto et al., 2012). The chal-
lenge is to obtain an appropriate combination, which cap-
tures the different spatial and temporal characteristics of
the processes causing drought (Wilhite, 2018). Meteorolog-
ical drought is defined as a deficit in rainfall totals over a
certain period. Longer periods of rainfall deficit result in
agricultural drought affecting plant growth, livestock wel-
fare, and ultimately the regional food security (Godfray
et al., 2010). Finally, hydrological drought is the result of
the impact of long-term rainfall deficit on reservoir and
river levels (van Loon, 2015). A combined drought index

should be composed of elements that capture all the spatial
and temporal variability of rainfall, soil moisture and vege-
tation health, considering also delays between the individ-
ual components.
A combined drought index was proposed by Cao et al.

(2019) in a case study over northeast China, making
use of remote sensing data for soil moisture and precip-
itation, and calculation of Potential Evapotranspiration
(PET). The Vegetation-Soil Water Deficit (VSWD), pro-
posed in the study, was compared with other metrics such
as theVegetationHealth Index (VHI) and the Standardized
Precipitation-Evapotranspiration Index (SPEI). TheVSWD
was found to better represent the severities of drought
based on in-situ verification; the performance was also
superior when evaluating past drought events over the
region.
Soil moisture from remote sensing has been recently

included in the drought index generated by the National
Center forMonitoring andEarlyWarning ofNaturalDisas-
ters (Cemaden), in Brazil. The integrated drought index IIS
(from Índice Integrado de Seca, in Portuguese)makes use of
the Standardized Precipitation Index (SPI), VHI, and Root
Zone Soil Moisture (RZSM) from NASA’s GRACE satel-
lite mission. Each individual index is converted to classes
of drought (1 to 5, from severe to light, and 6, for normal
conditions). The index is calculated as an average of the
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three reclassed indices and published monthly in drought
reports onCemaden’swebsite (www.cemaden.gov.br). The
RZSM was not included in the current work due to the
shorter data coverage (starting in 2003), as compared with
the 1979–2018 soil moisture modelled run and rainfall data
for SPI.
The objective of this study is to investigate the spa-

tial and temporal variability of soil moisture conditions
in the Brazilian semiarid using soil moisture observation
and simulations by the JULES land surface model. To test
whether soil moisture can be complementary to current
drought indices and indicators, long-term anomalies of
soil moisture were compared to anomalies of a vegeta-
tion index, which can be a proxy to drought impacts such
as crop yield losses. The temporal relationship between
the soil moisture anomaly and the vegetation index was
investigated using the cross-wavelet transform, enabling
the identification of temporal lags between the time series.
Negative anomalies in soil moisture related to future neg-
ative anomalies in the vegetation index can be used as
early warning of drought impacts. Results from this work
could support the integration of soil moisture estimates
into national initiatives of drought monitoring.

2 SITE ANDMETHODOLOGY

2.1 Measurements sites

The site locations are shown in Figure 1, as well as the
official delimitation of the Brazilian semiarid region (blue
contour), and the dominant biome over this area, the
Caatinga, a seasonally dry tropical forest characterized by
shrubs and thorny tree species (IBGE, 2019b). The region
is mostly characterized by sandy soils (Dijkshoorn et al.,
2005; Zeri et al., 2018). Annual rainfall ranges from 200
to 800 mm ⋅year−1 and is highly influenced by patterns of
Sea Surface Temperature (SST) in the tropical Pacific (El
Niño/Southern Oscillation—ENSO) and Atlantic Oceans.
The rainy season in some parts of northeast Brazil starts
in October/November and ends in July, depending on
the location. Rainfall over the southern part starts in
October/November and is associated with the passage of
fronts from the south; the position of the Intertropical
Convergence Zone (ITCZ) influences rainfall variability
over the northern part, where precipitation starts in Jan-
uary/February and peaks in March–May. For regions close
to the coast, the rainy season occurs from April to July
(Cavalcanti, 2009; Kousky, 1979).
Stationswere installed between 2014 and 2015within the

semiarid region (Figure 1b) as part of Cemaden’s efforts
to monitor precipitation and soil moisture over the region
most affected by droughts in Brazil. Soil moisture probes

(EC-5 model, Decagon Devices, Pullman, WA, USA) mak-
ing continuousmeasurements of volumetric water content
(in m3 m−3) at soil depths of 10 and 20 cm were installed
at each station. The stations are also equipped with rain
gauges (model PluvDB, DualBase, Santa Catarina, Brazil).
The network now has 595 stations over 9 states, most of
them installed at rural properties of subsistence agricul-
ture. Typical crops include rainfedmaize and beans. Exam-
ple applications of themeasurements carried out using this
network can be found in a previous study (Zeri et al., 2018).
The dataset used in the current study comprises of a

subset of stations selected based in a quality control pro-
cess, which was recently made available (Zeri et al., 2020).
The dataset containsmeasurements from 360 stationswith
at least 2 consecutive months of data, showing physically
consistent values in comparison with other depths. Soil
moisture values were considered acceptable within the
range of 0 to 0.8m3 m−3. Themajority of stations hadmea-
surements at 10 and 20 cm, which were averaged (depths)
for the correlation with modelled values.

2.2 JULES land surface model

We use the JULES land surface model (Best et al., 2011;
Clark et al., 2011), a community model developed in the
UK. JULES is a process-based simulator of the exchange
of water, energy and carbon between the land surface
and atmosphere. It can operate as a standalone land sur-
face model with driving meteorology or as the land sur-
face component of UK numerical weather prediction,
chemistry-climate and Earth system models (Marthews
et al., 2012; Sellar et al., 2020; Walters et al., 2014).
JULES uses 4 soil layers, with thicknesses 0.1, 0.25, 0.65,

and 2 m (i.e., total depth of soil column is 3 m) and the
soil moisture is updated on an hourly timestep. The ver-
tical fluxes of water between layers follow Darcy’s Law.
Precipitation can be intercepted and stored by the plant
canopy. The water reaching the surface is partitioned into
infiltration and surface runoff. Water is removed from the
soil layers by plant transpiration and by evaporation from
the top soil level (and also to prevent supersaturation).
Stomatal conductance is calculated fromnet leaf photosyn-
thesis, which uses the parametrisation from Collatz et al.
(1991) for C3 plants and Collatz et al. (1992) for C4 plants.
Leaf photosynthesis is moderated by a soil moisture stress
term. The contribution of different soil layers to this over-
all soil moisture stress term depends on an exponential
distribution, with a decay constant related to the effective
root depth of the plant functional type. The canopy radi-
ation scheme is multi-layer and includes sunflecks. Sub-
surface runoff is calculated using a TOPMODEL approach,
which simulates the height of the saturated zone in the soil

http://www.cemaden.gov.br
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column and an additional deep soil layer (this deep layer
has thickness 3 m and an exponential decay of saturated
hydraulic conductivity with depth).
The soil moisture is modelled for the entire gridbox (i.e.,

not for each tile type separately). We would expect to see
an improvement if the model was instead run at individ-
ual sites, with soil properties measured at each site, and
the site landcover. The Plant Functional Types (PFTs) and
land cover used are shown in Figure S1, Supporting Infor-
mation.
Soil moisture in JULES has been evaluated against in

situ soil moisture data (e.g., Iwema et al., 2017) and soil
moisture satellite products (Schellekens et al., 2017). Other
parts of the simulation that are influenced by absolute soil
moisture or soil moisture anomalies, such as evapotran-
spiration, water stress, runoff, water table depth have also
been evaluated in recent years (Blyth et al., 2011; Ellis et al.,
2009; Haddeland et al., 2011; Martínez-de la Torre et al.,
2019; Pan et al., 2020; Paschalis et al., 2020; Ukkola et al.,
2016).
In this study, we use JULES in standalone mode,

driven with the global WFDEI meteorological forcing
data (WATCH Forcing Data methodology applied to ERA-
Interim data (Weedon et al., 2014). The JULES version is
revision 9061 (which is between the tagged releases 4.9 and
5.0). Formore information about themodel setup for these
runs, see Bett et al. (2020).
A global gridded run at 0.5◦ x 0.5◦ spatial resolution

was undertaken for the years 1979 to 2018. The variables
of interest (e.g., modelled soil moisture as a function of
soil depth) were extracted for a domain covering north-
east Brazil (46◦W-32◦W, 18◦S-3◦S). We use the standard
set of soil ancillary parameters. The variable used was the
one corresponding to the soil water content at 10 to 35 cm
depth. The depth of 35 cm is within the root zone of maize,
the most commonly rainfed crop planted over the subsis-
tence agriculture farms in the region.

2.3 Long-term anomalies of rainfall,
vegetation index, and soil moisture

Anomalies of rainfall, a satellite vegetation index, and soil
moisture were calculated using the same approach com-
monly used to calculate the SPI. The SPI is proportional to
a z-score, that is, a measure of standard deviations above
the long-term mean. Other approaches used to calculate
anomalies include percentiles over a long-term mean, in
addition to the use of different time scales for SPI, such
as every 3, 6 or 12 months. In this study, 1-month SPI
was chosen as to have a unified approach to the anoma-
lies of the three components: rainfall (SPI), VHI, and soil
moisture.

The choices of SPI and VHI are justified due to their rel-
atively simple calculation and few data requirements. SPI
is adequate to Brazilian conditions since it requires only
measurements of rainfall. The SPI can be calculated using
gridded datasets of rainfall, in addition to in-situ measure-
ments. Other indices such as the Standardized Precipita-
tion Evapotranspiration Index (SPEI) or Palmer Drought
Severity Index (PDSI), for soil moisture, require addi-
tional measurements of evapotranspiration or soil mois-
ture, among other variables, which are not common to
find in several regions in Brazil (Svoboda & Fuchs, 2017;
Vicente-Serrano et al., 2010). An assessment of the perfor-
mance of SPI, VHI, and a soil moisture anomaly supports
their current use in Brazilian drought monitoring initia-
tives and help to improve its accuracy.

2.3.1 Standardized Precipitation Index

The anomaly of rainfall is derived from the calculations
of the SPI, which converts monthly totals of precipitation
into a range of values from -2 to 2, approximately equal to
a number of standard deviations from the mean (McKee
et al., 1993, 1995). The SPI is the most commonly used
index for monitoring of meteorological drought (Svoboda
& Fuchs, 2017). For its calculation, the time series is fitted
to a gammadistribution, usually reported to be appropriate
to describe rainfall records (Alam et al., 2018; Lima et al.,
2021; Thom, 1958; Yuan et al., 2018). The whole record of
rainfall (1981–2020) was used for the fitting process. Next,
the gamma cumulative distribution function (CDF) is cal-
culated with the resulting parameters from the fit. Finally,
the value of SPI is derived from the transformation of the
CDF into a normal distribution.
A drought event is ongoing when SPI falls below a

threshold, usually -1, during a certain period. The index
can be calculated for different time scales, such asmonthly,
3-monthly, yearly, and so on. In this work, we utilized the
monthly scale so that drought could be estimated in spe-
cific months of the crop calendar in each region. SPI was
calculated using an implementation in Python, already
applied in a study of rainfall variability over Central Brazil
(Zeri et al., 2019).
Rainfall data for the calculation of SPI was obtained

from CHIRPS, a global collection of precipitation records
interpolated over a 0.05 degree grid (Funk et al., 2014).
This dataset has been evaluated over Brazilian regions
before, resulting in different performances over the biomes
(Cavalcante et al., 2020; Paredes-Trejo et al., 2017). A
study using 21 rainfall stations over the Brazilian northeast
resulted in good correlation with CHIRPS (r = 0.94), but
overestimation and underestimation reported for the low
and high extremes of rainfall (Paredes-Trejo et al., 2017).
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According to the authors, uncertainties can be higher
than 100 mm/month when comparing estimates from
CHIRPS and stations. An evaluation of rainfall products
(CHIRPS, TRMM, ETA model) against weather stations
over Minas Gerais state found good agreement of CHIRPS
with measurements, with coefficient of determination (r2)
andNash-Sutcliffe efficiency coefficient (EFF) both higher
than 0.9 (Nogueira et al., 2018).However, it should be noted
that the study was not focused on the semiarid part of
Minas Gerais, but rather on the south and southeastern
parts of the state. Overall, uncertainty in rainfall estimates
is expected over Brazil, especially over its northeast region,
due to the poor spatial and temporal coverage of weather
stations.

2.3.2 Vegetation Health Index Anomaly

The VHI is a satellite product regarded as a proxy to
thermal and moisture conditions over vegetated surfaces
(Bokusheva et al., 2016; Kogan, 2002). VHI is a combina-
tion of two indices, the Vegetation Condition Index (VCI)
and Temperature Condition Index (TCI), expressed as:

VHI = 0.5 ∗ VCI + 0.5 ∗ TCI (1)

where VCI is obtained by normalizing the NDVI (Normal-
ized Difference Vegetation Index) from multi-year mini-
mum and maximum values; and TCI is a proxy for ther-
mal condition obtained by normalizing the brightness tem-
perature (BT), also from multi-year minimum and maxi-
mum values (1982–2018). VHI ranges from 0 to 100, with
values smaller than 40 indicating water stress condition,
and greater than 40 indicating good conditions for vegeta-
tion (Kogan, 1995, 1997).
The composite VHI is provided every 7 days by

the National Oceanic and Atmospheric Administration
(NOAA). In this work, data from 1982 to 2018 was used.
The 7-day releases were averaged monthly. Next, the
anomaly of this index (VHIa)was estimated using the same
approach used for the calculation of SPI.

2.3.3 Standardized Soil Moisture Anomaly

Finally, the model data were used to calculate a Standard-
ized Soil Moisture Anomaly (SMA). The index was cal-
culated with the same approach used to generate the SPI
of rainfall data, where the whole series is used to fit a
gamma function, later converted to a normal distribution.
The result is a monthly anomaly of soil moisture ranging
from approximately -4 to 4, with negative values denoting

drought. This approach is similar to the one used in a pre-
vious study, where soil moisture anomaly was calculated
using a z-score (Xu et al., 2018).
Strong negative events of SMA were compared with

episodes of ENSO from 1981 to 2018. The comparison
used classifications based on the Oceanic Niño Index
(ONI), developed by the National Oceanic and Atmo-
spheric Administration (NOAA). The following classes of
ENSO were considered: moderate, strong and very strong
(Null, 2021). Episodes of ENSO are generally reported as
a two-year event (e.g., 1997–1998), with a historical vari-
ability in start, end and duration. Here, the episodes were
marked in Figure 3 ranging from January 1st of the first
year until December 31st of the following year.

2.4 Cross-wavelet analysis

Wavelet analysis is a signal processing tool used to iden-
tify frequencies, or harmonics, which are present in a time
series and contribute to its variance over time (Grinsted
et al., 2004; Torrence & Compo, 1998). The technique has
the advantage of highlighting harmonics which are inter-
mittent in time, which is a useful feature when analysing
climate signals with low stationarity. A time series is
considered to have low stationarity when its statistical
moments (mean, variance, skewness, kurtosis) change sig-
nificantly over time (Wilks, 1995). Geophysical time series,
specifically climate data, usually are subjected to intermit-
tent influences which are easily identified in wavelet anal-
ysis. In addition, climate change disrupts the stationarity
and regularity of events previously regarded as periodic,
with extreme floods, dry spells and droughts becoming
more frequent (Cunha et al., 2019).
Regular wavelet analysis makes use of the convolution

of a function (the “mother” wavelet) along the time series,
in a moving window (Torrence & Compo, 1998). The con-
volution is repeated using stretched and shrunk versions
of the mother wavelet. Significant frequencies, or harmon-
ics, present in the time series are identified if their shape
match that of the mother wavelet. Stretched versions of
themother wavelet result in higher convolution over lower
frequencies, that is, longer peaks or oscillations; the con-
volution with shrunk versions identify higher frequencies,
or short-lived peaks. The final result is the wavelet power,
which can be visualized in a bi-dimensional plot with time
on the x-axis and frequencies in the y-axis.Mathematically,
the wavelet transform W(t,a) has units of the series vari-
ance as it is defined as:

𝑊 (𝑡, 𝑎) =
1√
𝑎

∞

∫
−∞

𝑥 (𝜏)Ψ∗
(𝜏 − 𝑡

𝑎

)
𝑑𝜏 (2)
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where x is a time series, t is the time, 𝜏 is the integration
variable along time, and a is the parameter that stretches
and shrinks the mother wavelet Ψ (* denotes the complex
conjugate). Mother wavelets should have zero mean and
be localized in time, among other criteria. The most used
functions are the Morlet, the Mexican hat, or the Haar
(Jiang et al., 2006; Lovejoy&Schertzer, 2012;Mi et al., 2005;
Torrence & Compo, 1998). In this study, the Morlet func-
tion was used since it was reported in previous works to be
appropriate to identify features in geophysical time series
(Liu et al., 2020; Sá et al., 1998; Zeri et al., 2019). The func-
tion is defined as:

Ψ (𝜂) = 𝜋−1∕4 𝑒𝑖𝜔0𝜂𝑒−𝜂
2∕2 (3)

where η and 𝜔0 are non-dimensional parameters of time
and frequency, respectively, and i is the imaginary unit.
Cross-wavelet analysis is a variation of the technique

that quantifies the variability of the covariance between
two signals in time and frequency (Grinsted et al., 2004).
The resulting cross-wavelet powerWxy(t,a) has units of the
covariance between signals x and y. The complex part of
Wxy(t,a) has information on the phase difference between
x and y, which can be converted to temporal lags according
to the following expression:

𝜆 = 𝑇

(
𝜃

360

)
(4)

where 𝜆 is the temporal lag, in months, T is the time scale,
in months, and 𝜃 is the phase angle, in degrees. The phase
angle reference (zero degrees) is north, increasing in clock-
wise direction. Thus, East pointing arrows (90◦) on the
time scale of 12 months would results in a lag of 3 months.
Cross-wavelet analysis was used in this work to investigate
the temporal relationships between time series of climate
indices such as the SMA, SPI, and VHI.
All calculations were made using Python 3.9 and the

python package PyCWT (https://pypi.org/project/pycwt/),
which has implementations of the original scripts for
wavelet and cross-wavelet analysis (Grinsted et al., 2004;
Torrence & Compo, 1998).

3 RESULTS AND DISCUSSION

3.1 Jules model evaluation with in situ
data

Model and measurements of soil moisture were correlated
over the region by comparing data from stations with the
nearest grid points. The focus of the comparison was to
evaluate the variability and trends of both datasets rather

than aiming at precise absolute values of soil moisture.
Nevertheless, the median correlation was approximately
0.48 over the domain, with median Root Mean Square
Error (RMSE) and Mean Bias Error (MBE) of approxi-
mately 0.07 m3 m−3 and 0.12 m3 m−3, respectively (Fig-
ure 2). Spearman correlation coefficient was used for its
robustness, since no assumption is made about the data
having a normal distribution (which is assumed in Pearson
correlation). In this figure, only stations where the corre-
lation was statistically significant (at 5% level) were used,
which resulted in the selection of 336 out of 360 stations
(the bias of selecting only statistically significant correla-
tions was negligible; the analysis considering all 360 sta-
tions resulted in a median correlation coefficient of 0.47).
Correlation varied among the domain according to soil

texture classes. The three most common classes were
loamy sand, sandy clay loam, and sandy loam, according
to classes defined by theUnited States Department of Agri-
culture (USDA). Each one of those classes were observed
over approximately 80 stations, accounting to 71% of the
total; for those classes, median correlation between model
and measured soil moisture was of 0.51 ± 0.15. What is
common to those three classes is the sand content higher
than 50% of the sample mass, which is consistent with
the typical sandy soils observed over the Brazilian semi-
arid (Marques et al., 2014). Other significant texture classes
were sand and clay, corresponding to 40 (12%) and 25 (7%)
stations, respectively. Median correlation for those classes
was of 0.50 ± 0.15 (sand) and 0.35 ± 0.15 (clay). Maximum
correlationwas 0.67± 0.15 for three stationswith silty loam
soil texture class.
Correlations of 0.6 to 0.7 between measurements and

modelled estimates were reported before in a study using
data from 12 networks over 4 continents (Albergel et al.,
2012). However, measurements at several depths up to 1
m were used in that study, in addition to model estimates
within a 3m layer. The results in the current study between
JULES surface soil moisture and in situ observations were
considered satisfactory, especially as the model and mea-
surements are not perfectly matched in terms of spatial
scale and soil depth. The model data resulted in a good
performance when considering identification of drought
events and trends, as discussed below.

3.2 Standardized soil moisture anomaly

Examples of SMA can be seen in Figure 3 for grid points
next to three stations in the states of Rio Grande do Norte
(north), Bahia (Centre), and Minas Gerais (south). Classes
of ENSO were also included in this figure. The exact loca-
tion of the three sites can be seen in Figure 4. The lowest
values of SMA in the period were registered in 1983, 1994,

https://pypi.org/project/pycwt/
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F IGURE 2 Correlation coefficient (Spearman) between measured and modelled (JULES) soil moisture. Median statistics computed
using data from 2015 to 2018. Abbreviations: MBE, mean bias error; RMSE, root mean square error.

and 2012–2013, with values well below -1, generally consid-
ered as the lower bound of a normal condition for a stan-
dardized anomaly. The first year (1983) was associatedwith
a very strong ENSO (1982–1983), the second event followed
a strong ENSO (1992–1993), while 2012–2013 was the start
of a five-year drought in the region (Brito et al., 2017). The
very strong ENSO of 1997–1998 was associated with SMA
values below -1 in all three locations. It is also evident that
drought events which are strong in a region have a differ-
ent magnitude in another, such as the period 2012–2013
which was associated with strong droughts in Rio Grande
do Norte (panel a) but less intense events in the other two
sites. Similarly, the El Niño of 1983, one of the strongest
in the record, had a larger impact on the station of Minas
Gerais (panel c), in comparison with the other two loca-
tions. Finally, the centre and south locations had SMI < -2
during the very strong ENSO of 2015–2016.
The different spatial patterns of drought according to

SMA can be seen in Figure 4 (the colour scale), in addi-

tion to the growing season periods, and municipalities
affected by drought. Three months were chosen to repre-
sent droughts: April 2012, April 2013, and January 2015.
January and April are part of three rainy periods consid-
ered for agriculture in the Brazilian semiarid. The grow-
ing season periods which include the respective month are
also shown in each panel of Figure 4. These periods were
defined in a previous study that evaluated the start of the
rainy season in the region (Brito et al., 2017). The drought
in 2012 affected most of the Brazilian semiarid, covering
all its latitudinal transect. Droughts were also registered in
the following year (April 2013), and January 2015 was char-
acterized by a strong drought in the south.
Rainfall in 2012, 2013 and 2015 was below the historical

average within the Brazilian semiarid and contributed to
drier soils and drought impacts. We considered the period
from November to July since it includes all the rainy peri-
ods over the region. We sampled the CHIRPS database
using the Jules model grid points (Figure 1c). Only the
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F IGURE 3 Time series of the Standardized Soil Moisture Index (SMA) for grid points over the north (top panel), centre (middle) and
south (bottom) of the region. The horizontal line marks the value of −1, generally considered as the lower bound of a normal condition. The
color scale is the same as y-axis values of SMA. The black symbols denote the locations similarly marked in Figure 4. ENSO classes based on
the Oceanic Niño Index (ONI)

grid points within the semiarid were included. The mean
cumulative rainfall from November to July, in the period
of 1981 to 2020, was of 698 mm. Considering the same date
range, the sum for 2011–2012, 2012–2013, and 2014–2015
was of 400, 553, and 653 mm, respectively.
The droughts in Figure 4 led to crop yield losses for rain-

fed agriculture, the predominant system in the region. The
impacts of droughts on the regionwere assessed using data
from the “Garantia Safra” program. Municipalities with
verified droughts and yield losses are denoted with the red
markers in Figure 4. Overall, the number of municipali-
ties supported by the program during the cropping seasons
of 2011–2012, 2012–2013, and 2014–2015 were, respectively
1015, 240, and 1014; these numbers correspond to 80.4%,
19.0%, and 80.3% of the 1262 municipalities which are
located within the official Brazilian semiarid delimitation.

A negative anomaly in soil moisture leads to crop losses
due to water stress and reduction in evapotranspiration.
Some periods during the growing season are critical, such
as the first 2 months after planting, in the case of maize,
when vegetative growth and flowering stages occur. The
number of drought events identified by SMA during the
growing season was counted and compared with events
identified by SPI (Figure 5). The criterion used was based
on values of SMA lower than -1 in the first or second
months of the growing season. The same approach was
used for SPI. The search was made for each of the model
grid points. The growing season at each of the grid points
is illustrated in Figure 5a. Grid points were selected by the
intersection with the rainy season (growing season) con-
tours in Figure 4. The results in Figure 5b show that on
average 5 to 12 drought events were recorded by SMA or
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F IGURE 4 Standardized Soil Moisture Index interpolated over the region for (a) April 2012, (b) April 2013 and (c) January 2015. Symbols
★, ■, and ∙ denote the locations in top, middle and bottom panels of Figure 3, respectively. Red markers denote municipalities with verified
drought impact, according to the “Garantia Safra” crop insurance program. The contour lines mark the rainy periods associated with the
month shown in the figure

F IGURE 5 (a) Grid points coloured according to the rainy period; (b) Average number of drought events during the first 2 months of the
rainy period according to SPI, SMA, and SPI or SMA. Period of analysis: 1981–2019
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F IGURE 6 (a) Time series of SMA next to the location marked with ★ in Figure 4; (b) VHI anomaly at the same location; (c)
cross-wavelet power between SMA and VHIa. Black contours denote areas statistically significant; the shaded area is not considered due to
the influence of the series edges; arrows denote the phase difference between signals in the corresponding time scale (y-axis). Location
coordinates: −6.123 (latitude), −38.136 (longitude).

SPI, independently (blue and orange bars). The region of
rainy period in DJFM was the one with the lowest num-
ber of events. Typically, both indices differ by 1 or 2 events
identified. When both SPI and SMA criteria are combined
(green bar), the number of drought events reaches approx-
imately 20 in 4 of the 5 classes, suggesting that both indices
are complementary in identifying drought. Drought events
identified by SMA and SPI simultaneously (not shown)
accounted for approximately half of each individual score
(5/6 events in JFMA class, for example). Thus, double
accounting is expected in the green bar in Figure 5b, espe-
cially because rainfall and soil moisture are strongly cor-
related. However, this redundancy is irrelevant when the
main objective is an assessment of drought with comple-
mentary indices. This result shows that an integrated index
that considers SMAand SPI, among other indices and indi-
cators, might more suitable to identify drought due to the
different temporal and spatial scales identified by individ-
ual components, such as rainfall, soil moisture, and vege-
tation status.

3.3 Cross-wavelet analysis

The impacts of SMA on drought detection in the region
was assessed using cross-wavelet analysis. This technique
enables the calculation of correlation between two time
series taking into account lagged relationships. This is
especially useful to assess the impact of soil moisture
deficit due to the delay in plants to respond to water stress
in the soil (Adegoke &Carleton, 2002). The cross wavelet
between SMA and VHI anomaly (VHIa) was applied for
the same sites shown in Figure 3 (in Figures 6, 7, and 8,
respectively).
Significant cross wavelet power (within the closed con-

tours) between SMA and VHIa are found ranging from 2 to
128months, during the whole period. However, the signifi-
cant contributions on a given time scale, such as 16months,
are intermittent. Overall, the strongest crosswavelet power
is found between 8 and 64months, denoting strong covari-
ance between SMA and VHIa with annual to interannual
variability. Most of the arrows inside the closed contours



12 of 18 ZERI et al.

F IGURE 7 Similar to Figure 6, for the location marked with ■ in Figure 4. Location coordinates: −10.808 (latitude), −40.642 (longitude)

have 0–45◦ angles, approximately. In the annual time scale
(12 months) angles are mostly 30–45◦, especially from 1984
to 1992, and 2008 to 2014 (Figures 6 and 7). The angles of
30 to 45◦ would result in lags of VHIa in relation to SMA
on the order of 1 to 1.5 months in the annual time scale.
Thus, variability in SMA could be used as an early warning
to anomalies in VHIa. A strong negative anomaly of SMA
in the first month after planting indicate likely impacts
on crop growth, as indicated by VHIa. Negative anomalies
after the crop development and flowering stages, such as 30
to 60 days after planting for maize, could result in impacts
on final yields expected on the following month.
Interannual variability is also evident in the cross-

wavelet analysis between SMA and VHIa, especially
around 32 to 64 months (approximately 3 to 5 years). In
Figure 6, negative anomalies of SMA and VHIa were cor-
related from 1992 to 1994, around 1998, and from 2012 to
2014. The arrows in the time scale of 64 months are mostly
upwards (zero angle), indicating negligible lag. The first
two events were associated with ENSO. The interannual
variability observed in Figure 6 is not the same observed in
Figures 7 and 8 due to the different susceptibility to inter-
annual variability in the corresponding locations. Histor-

ically, the northern part of the Brazilian semiarid region
is strongly associated drought caused by ENSO variabil-
ity (Hastenrath & Heller, 1977; Hastenrath, 2006; Pezzi &
Cavalcanti, 2001; Tomasella et al., 2018). Two patterns are
evident in Figure 8: (1) almost no significant cross wavelet
power exists after 2008 from time scales up to 32 months;
(2) strong interannual variability of 20 years (1996 to 2016).
The second pattern cannot be resolved by this analysis due
to the series length, since the 20 years’ time scale (240
months) falls within the “cone of influence”, the shaded
and hatched area where results are affected by time series
edge effects.
To check whether SMA and SPI have similar perfor-

mance in terms of temporal variability with VHIa, cross-
wavelet analysis was applied to the relationship between
SPI and VHIa (Figure S2, Supporting Information, for the
Pau dos Ferros, RN, site). Overall, the relationship between
SPI and VHIa is similar to the one observed for SMA and
VHIa especially due to the significant time scales in the
range of 4 to 64 months; and the average lag between
series around 30–45◦. The agreement between SMA and
SPI at this location can be seen in the cross wavelet in
Figure S3, Supporting Information. The arrows within the
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F IGURE 8 Similar to Figure 6, for the location marked with • in Figure 4. Location coordinates: −16.359 (latitude), −42.530 (longitude)

contour lines aremostly vertical, with small angles in some
cases, indicating small temporal lags. According to the
rainy quarters of Figure 4, the Pau dos Ferros site (star) is
located within the JFMA limits. In fact, the average num-
ber of drought events for the JFMA in Figure 5 was approx-
imately 12 for both SMA and SPI.
The same analysis was done for the other sites over the

middle and south of the domain comparing cross wavelets
between SPI and VHIa, and SMA and SPI (results not
shown). For the Bahia site (middle), more events were sig-
nificant in the SPI x VHIa cross wavelet in comparison
with SMA × VHIa (Figure 7) especially after 2016 in the
annual time scale. For the southern site, the significant
cross wavelet power events between SPI and VHIa were
sparser in time, short-lived, and absent above the time
scale of 32 months, in comparison with results in Figure 8.
This site was also the one with the highest number of sig-
nificant events between SPI and SMA in the time scale of 4
months (in relation to Figure S3, Supporting Information).
Intra-annual variability was observed in time scales

from 2 to 8months in Figures 6–8, and in Figures S2 and S3,
Supporting Information. In this case, the analysis of phase
relationships and lags in time is not conclusive due to the

short nature of events. However, a significant event can be
seen in 2016 around time scale of 4–8months (Figure 7). In
this case, arrows are almost horizontal at 90◦, indicating a
VHIa lag of¼ of the time scale, or 1–2months, in relation to
SMA. Other significant event with similar characteristics
of time scale and lagwas found in the relationship between
SPI and VHIa for the same site (not shown).
Overall, SMA and SPI have similarities and differences

when used to identify droughts, in agreement in the
accounting of events in Figure 5. The differences across
the latitudinal extent are expected due to several reasons,
namely: (1) different climate and weather patterns; (2) dif-
ferences in soil characteristics and desertification; and (3)
different biomes. The northern part of the Brazilian semi-
arid is affected by climate teleconnections with the Pacific
and Atlantic Oceans. This influence is weaker as one
moves southwards. Soils over the Brazilian semiarid are
mostly sandy, but the proportion of clay content is higher
over the southern part of the domain (Zeri et al., 2018). Soils
with high clay content hold more water, which can affect
the dynamics of soil moisture and evaporation. Finally, the
southern part of the Brazilian semiarid has three biomes
(Figure 1):Caatinga,Cerrado andAtlantic Forest. Different
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kinds of vegetation affect the water cycle and relationships
between rainfall, soil moisture, and evapotranspiration.
The results presented here show a good performance of

the JULES soil moisture when applied to identify the spa-
tial and temporal relationships (or patterns) of droughts in
the Brazilian semiarid. These findings highlight the impor-
tance of using datasets from different sources (model out-
puts, remote sensing, in situ information), such as rain-
fall anomalies, soil moisture deficit, and vegetation indices
to reduce the uncertainty of drought assessments. Long-
term datasets of in-situ soil moisture data are scarce, espe-
cially over the Brazilian semiarid region. The use of hydro-
logical or land surface models can fill this gap by pro-
viding long-term outputs and enabling the calculation of
anomalies and trends. Future studies should focus on
testing of different models and combination with other
indices.

4 CONCLUSIONS

Soil moisture is essential to crop growth and development
and its deficit on short and long terms can lead to impacts
on rainfed and subsistence agriculture. Long-term time-
series of soil moisture measurements are rarely available
in most parts of the world. Modelling of the water bal-
ance is an alternative to obtain time series of soil moisture,
enabling the identification of trends and characterization
of droughts especially agricultural droughts.
Drought monitoring usually makes use of rainfall

deficits over different temporal scales. Recent approaches
make use of rainfall, soil moisture and vegetation indices
to assess drought in a combined way, integrating differ-
ent temporal and spatial scales. The results presented in
this work show that the soil moisture from the JULES
land surfacemodel correctly identifies drought events over
the Brazilian semiarid. The model outputs were used to
calculate an anomaly of soil moisture which responds to
droughts over the region. The resulting index has a good
performance identifying drought events when compared
to SPI. The index SMA is also well correlated with VHI,
indicating that negative anomalies in soil moisture led to
impacts on plant development. Future studies should be
carried out with the objective of testing additional models
for the soil water over the region, in combination with dif-
ferent drought indices and indicators.
An important step to improve drought monitoring is the

development of significant technical capacity in terms of
information database, which is reflected in reliable early
warning systems aiming at reducing vulnerability of peo-
ple at risk (Gutiérrez et al., 2014; Wilhite et al., 2014). In
this sense, the results presented in this paper support the
conclusion that an integrated approach with anomalies of

soilmoisture, rainfall and vegetation indices should be pre-
ferred when designing a monitoring system in order to
capture different aspects of drought. Drought monitoring
and assessment should make use of different tools to iden-
tify spatial and temporal patterns. The use of soil mois-
ture from hydrological or land surface models, and satel-
lite products is an alternative to complement the current
tools such as SPI and vegetation indices. Drought manage-
ment policy for Brazil, especially over the semiarid region,
should make use of all available sources of information in
an integrated way.
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