479 research outputs found

    Autoimmune diseases in children

    Full text link

    Haemophilus influenzae type b reemergence after combination immunization

    Get PDF
    An increase in Haemophilus influenzae type b (Hib) in British children has been linked to the widespread use of a diphtheria/tetanus/acellular pertussis combination vaccine (DTaP-Hib). We measured anti-polyribosyl-ribitol phos- phate antibody concentration and avidity before and after a Hib booster in 176 children 2–4 years of age who had received 3 doses of DTP-Hib (either DT whole cell pertus- sis-Hib or DTaP-Hib) combination vaccine in infancy. We also measured pharyngeal carriage of Hib. Antibody con- centrations before and avidity indices after vaccination were low (geometric mean concentration 0.46μg/mL, 95% confidence interval [CI] 0.36–0.58; geometric mean avidity index 0.16, 95% CI 0.14–0.18) and inversely related to the number of previous doses of DTaP-Hib (p = 0.02 and p<0.001, respectively). Hib was found in 2.1% (95% CI 0.7%–6.0%) of study participants. Our data support an association between DTaP-Hib vaccine combinations and clinical Hib disease through an effect on antibody concen- tration and avidit

    Humic Substances Enhance Chlorothalonil Phototransformation via Photoreduction and Energy Transfer

    Get PDF
    ABSTRACT: The photodegradation of chlorothalonil, a polychlorinated aromatic fungicide widely used in agriculture, was investigated under ultraviolet–visible irradiation in the presence and absence of different humic substances that significantly enhance the chlorothalonil phototransformation. On the basis of a kinetic model, an analytical study, the effect of scavengers, the chlorothalonil phosphorescence measurement, and varying irradiation conditions, it was possible to demonstrate that this accelerating effect is due to their capacity to reduce the chlorothalonil triplet state via H-donor reaction and to energy transfer from the triplet humic to ground state chlorothalonil. Energy transfer occurs at wavelengths below 450 nm and accounts for up to 30% of the reaction in deoxygenated medium upon irradiation with polychromatic light (300–450 nm). This process is more important with Elliott humic and fulvic acids and with humic acids extracted from natural carbonaceous material than with Nordic NOM and Pahokee peat humic acids. The obtained results are of high relevance to understanding the processes involved in chlorothalonil phototransformation and the photoreactivity of humic substances. Chlorothalonil is one of the rare molecules shown to react by energy transfer from excited humic substances

    The success of the Montreal Protocol in mitigating interactive effects of stratospheric ozone depletion and climate change on the environment

    Get PDF
    The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.Non peer reviewe

    Arzneimittel für neuartige Therapien – Perspektiven, Chancen, Herausforderungen

    Get PDF
    Zusammenfassung Arzneimittel für neuartige Therapien (ATMP) wie somatische Gentherapie und Zelltherapie besitzen ein hohes therapeutisches Potenzial für Krankheiten, die sehr früh im Leben beginnen, und die bisher nicht behandelbar waren. Sie werden oft in einem sehr frühen Entwicklungsstadium zugelassen, wenn an wenigen Betroffenen die Wirksamkeit gezeigt wurde und sich ein bisher nie dagewesener Therapieerfolg auftut, vor allem, wenn die Therapie vor Eintritt von Organschäden greift. Dadurch ergeben sich für Pädiater neue arzneimittelrechtliche und ethische Fragen. Um die neuen Behandlungsmöglichkeiten adäquat einzusetzen, muss die Diagnose früher als bisher gestellt werden, oder neue Screeningmethoden müssen zur Verfügung stehen. Denkbar ist, dass das Neugeborenenscreening in zeitkritische Krankheiten in den ersten 72 h nach Geburt und ein genetisches Screening (z. B. in der 4. bis 5. Lebenswoche) aufgeteilt wird. ATMP sind bei ihrer Zulassung noch nicht in ausreichender Anzahl angewendet worden, sodass die notwendigen Erkenntnisse für Wirksamkeit und Sicherheit noch nicht vorliegen (Nutzen-Risiko-Verhältnis). Deswegen werden sie unter strengen Auflagen in spezialisierten Behandlungszentren nach Qualitätskriterien eingesetzt, die der Gemeinsame Bundesausschuss (G-BA) nach Beratung mit den Fachgesellschaften festlegt. Der Aufwand der Therapie und der Dokumentation des Verlaufes in Registern ist erheblich und muss entsprechend vergütet werden. Der Wert eines ATMP wird erst mit seiner breiteren Anwendung nach der Zulassung klar, ähnlich wie die Sicherheit eines Arzneimittels nicht mit der Zulassung vollumfänglich bekannt ist. Für die Pädiatrie ergeben sich neue Herausforderungen und Chancen

    United Nations Environment Programme (UNEP), Questions and Answers about the Effects of Ozone Depletion, UV Radiation, and Climate on Humans and the Environment. Supplement of the 2022 Assessment Report of the UNEP Environmental Effects Assessment Panel

    Get PDF
    This collection of Questions & Answers (Q&As) was prepared by the Environmental Effects Assessment Panel (EEAP) of the Montreal Protocol under the umbrella of the United Nations Environment Programme (UNEP). The document complements EEAP’s Quadrennial Assessment 2022 (https://ozone. unep.org/science/assessment/eeap) and provides interesting and useful information for policymakers, the general public, teachers, and scientists, written in an easy-to-understand language

    Environmental Effects of Stratospheric Ozone Depletion, UV Radiation, and interactions with Climate Change: 2022 Assessment Report

    Get PDF
    The Montreal Protocol on Substances that Deplete the Ozone Layer was established 35 years ago following the 1985 Vienna Convention for protection of the environment and human health against excessive amounts of harmful ultraviolet-B (UV-B, 280-315 nm) radiation reaching the Earth’s surface due to a reduced UV-B-absorbing ozone layer. The Montreal Protocol, ratified globally by all 198 Parties (countries), controls ca 100 ozone-depleting substances (ODS). These substances have been used in many applications, such as in refrigerants, air conditioners, aerosol propellants, fumigants against pests, fire extinguishers, and foam materials. The Montreal Protocol has phased out nearly 99% of ODS, including ODS with high global warming potentials such as chlorofluorocarbons (CFC), thus serving a dual purpose. However, some of the replacements for ODS also have high global warming potentials, for example, the hydrofluorocarbons (HFCs). Several of these replacements have been added to the substances controlled by the Montreal Protocol. The HFCs are now being phased down under the Kigali Amendment. As of December 2022, 145 countries have signed the Kigali Amendment, exemplifying key additional outcomes of the Montreal Protocol, namely, that of also curbing climate warming and stimulating innovations to increase energy efficiency of cooling equipment used industrially as well as domestically. As the concentrations of ODS decline in the upper atmosphere, the stratospheric ozone layer is projected to recover to pre-1980 levels by the middle of the 21st century, assuming full compliance with the control measures of the Montreal Protocol. However, in the coming decades, the ozone layer will be increasingly influenced by emissions of greenhouse gases and ensuing global warming. These trends are highly likely to modify the amount of UV radiation reaching the Earth\u27s surface with implications for the effects on ecosystems and human health. Against this background, four Panels of experts were established in 1988 to support and advise the Parties to the Montreal Protocol with up-to-date information to facilitate decisions for protecting the stratospheric ozone layer. In 1990 the four Panels were consolidated into three, the Scientific Assessment Panel, the Environmental Effects Assessment Panel, and the Technology and Economic Assessment Panel. Every four years, each of the Panels provides their Quadrennial Assessments as well as a Synthesis Report that summarises the key findings of all the Panels. In the in-between years leading up to the quadrennial, the Panels continue to inform the Parties to the Montreal Protocol of new scientific information

    Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants

    Get PDF
    An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens
    • …
    corecore