255 research outputs found
Controlling surface plasmon polaritons in transformed coordinates
Transformational optics allow for a markedly enhanced control of the
electromagnetic wave trajectories within metamaterials with interesting
applications ranging from perfect lenses to invisibility cloaks, carpets,
concentrators and rotators. Here, we present a review of curved anisotropic
heterogeneous meta-surfaces designed using the tool of transformational
plasmonics, in order to achieve a similar control for surface plasmon
polaritons in cylindrical and conical carpets, as well as cylindrical cloaks,
concentrators and rotators of a non-convex cross-section. Finally, we provide
an asymptotic form of the geometric potential for surface plasmon polaritons on
such surfaces in the limit of small curvature.Comment: 14 pages, 9 figure
Giant Nonlinear Optical Activity from Planar Metasurfaces
Second harmonic generation circular dichroism (CD) is more sensitive to the handedness of
chiral materials than its linear optical counterpart. In this work, we show that 3D chiral structures are not
necessary for introducing strong CD for harmonic generations. Specifically, we demonstrate giant CD for
both second harmonic generation and third harmonic generation on suitably designed ultrathin plasmonic
metasurfaces. It is experimentally and theoretically verified that the overwhelming contribution to this
nonlinear CD is of achiral origin. The results shed new light on the origin of the nonlinear CD effect in
achiral planar surfaces
Numerical Investigation of Local Heat-Release Rates and Thermo-Chemical States in Side-Wall Quenching of Laminar Methane and Dimethyl Ether Flames
The local heat-release rate and the thermo-chemical state of laminar methane and dimethyl ether flames in a side-wall quenching configuration are analyzed. Both, detailed chemistry simulations and reduced chemistry manifolds, namely Flamelet-Generated Manifolds (FGM), Quenching Flamelet-generated Manifolds (QFM) and Reaction-Diffusion Manifolds (REDIM), are compared to experimental data of local heat-release rate imaging of the lab-scale side-wall quenching burner at Technical University of Darmstadt. To enable a direct comparison between the measurements and the numerical simulations, the measurement signals are computed in all numerical approaches. Considering experimental uncertainties, the detailed chemistry simulations show a reasonable agreement with the experimental heat-release rate. The comparison of the FGM, QFM and REDIM with the detailed simulations shows the high prediction quality of the chemistry manifolds. For the first time, the thermo-chemical state during quenching of a dimethyl ether-air flame is examined numerically. Therefore, the carbon monoxide and temperature predictions are analyzed in the vicinity of the wall. The obtained results are consistent with previous studies for methane- air flames and extend these findings to more complex oxygenated fuels. Furthermore, this work presents the first comparison of the QFM and the REDIM in a side-wall quenching burner
Moulding the flow of surface plasmons using conformal and quasiconformal mapping
In this paper we analyze how Transformation Optics recipes can be applied to
control the flow of surface plasmons on metal-dielectric interfaces. We study
in detail five different examples: a cylindrical cloak, a beam shifter, a
right-angle bend, a lens and a ground-plane cloak. First, we demonstrate that
only the modification of the electric permittivity and magnetic permeability in
the dielectric side can lead to almost perfect functionalities for surface
plasmons. We also show that, thanks to the quasi two-dimensional character of
surface plasmons and its inherent polarization, the application of conformal
and quasiconformal mapping techniques allows the design of plasmonic devices in
which only the isotropic refractive index of the dielectric film needs to be
engineered.Comment: To be published in New Journal of Physic
Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal
We experimentally and theoretically study the controlled coupling between localized and delocalized surface plasmon modes supported by a multilayer metallic photonic crystal slab. The model system to visualize the interaction phenomena consists of a gold nanowire grating and a spatially separated homogeneous silver film. We show that plasmon-plasmon coupling leads to drastic modification of the optical properties in dependence on the chosen geometrical parameters. Strong coupling and plasmon hybridization can be clearly observed. The numerical calculations reveal excellent agreement with the experiments. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGa-A, Weinheim
Plasmonic Luneburg and Eaton Lenses
Plasmonics is an interdisciplinary field focusing on the unique properties of
both localized and propagating surface plasmon polaritons (SPPs) -
quasiparticles in which photons are coupled to the quasi-free electrons of
metals. In particular, it allows for confining light in dimensions smaller than
the wavelength of photons in free space, and makes it possible to match the
different length scales associated with photonics and electronics in a single
nanoscale device. Broad applications of plasmonics have been realized including
biological sensing, sub-diffraction-limit imaging, focusing and lithography,
and nano optical circuitry. Plasmonics-based optical elements such as
waveguides, lenses, beam splitters and reflectors have been implemented by
structuring metal surfaces or placing dielectric structures on metals, aiming
to manipulate the two-dimensional surface plasmon waves. However, the abrupt
discontinuities in the material properties or geometries of these elements lead
to increased scattering of SPPs, which significantly reduces the efficiency of
these components. Transformation optics provides an unprecedented approach to
route light at will by spatially varying the optical properties of a material.
Here, motivated by this approach, we use grey-scale lithography to
adiabatically tailor the topology of a dielectric layer adjacent to a metal
surface to demonstrate a plasmonic Luneburg lens that can focus SPPs. We also
realize a plasmonic Eaton lens that can bend SPPs. Since the optical properties
are changed gradually rather than abruptly in these lenses, losses due to
scattering can be significantly reduced in comparison with previously reported
plasmonic elements.Comment: Accepted for publication in Nature Nanotechnolog
A Carpet Cloak Device for Visible Light
We report an invisibility carpet cloak device, which is capable of making an
object undetectable by visible light. The cloak is designed using quasi
conformal mapping and is fabricated in a silicon nitride waveguide on a
specially developed nano-porous silicon oxide substrate with a very low
refractive index. The spatial index variation is realized by etching holes of
various sizes in the nitride layer at deep subwavelength scale creating a local
effective medium index. The fabricated device demonstrates wideband
invisibility throughout the visible spectrum with low loss. This silicon
nitride on low index substrate can also be a general scheme for implementation
of transformation optical devices at visible frequency
Maskless Plasmonic Lithography at 22 nm Resolution
Optical imaging and photolithography promise broad applications in nano-electronics, metrologies, and single-molecule biology. Light diffraction however sets a fundamental limit on optical resolution, and it poses a critical challenge to the down-scaling of nano-scale manufacturing. Surface plasmons have been used to circumvent the diffraction limit as they have shorter wavelengths. However, this approach has a trade-off between resolution and energy efficiency that arises from the substantial momentum mismatch. Here we report a novel multi-stage scheme that is capable of efficiently compressing the optical energy at deep sub-wavelength scales through the progressive coupling of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs). Combining this with airbearing surface technology, we demonstrate a plasmonic lithography with 22 nm half-pitch resolution at scanning speeds up to 10 m/s. This low-cost scheme has the potential of higher throughput than current photolithography, and it opens a new approach towards the next generation semiconductor manufacturing
Transformational Plasmon Optics
Transformation optics has recently attracted extensive interest, since it
provides a novel design methodology for manipulating light at will. Although
transformation optics in principle embraces all forms of electromagnetic
phenomena on all length scales, so far, much less efforts have been devoted to
near-field optical waves, such as surface plasmon polaritons (SPPs). Due to the
tight confinement and strong field enhancement, SPPs are widely used for
various purposes at the subwavelength scale. Taking advantage of transformation
optics, here we demonstrate that the confinement as well as propagation of SPPs
can be managed in a prescribed manner by careful control of the dielectric
material properties adjacent to a metal. Since the metal properties are
completely unaltered, it provides a straightforward way for practical
realizations. We show that our approach can assist to tightly bound SPPs over a
broad wavelength band at uneven and curved surfaces, where SPPs would normally
suffer significant scattering losses. In addition, a plasmonic waveguide bend
and a plasmonic Luneburg lens with practical designs are proposed. It is
expected that merging the unprecedented design flexibility based on
transformation optics with the unique optical properties of surface modes will
lead to a host of fascinating near-field optical phenomena and devices.Comment: 17 pages, 6 figure
- …