13 research outputs found

    Upgrade of the relative calibration methods and Bayesian inference processing for electron cyclotron emission radiometry

    No full text
    An upgraded local oscillator (LO) hopping calibration method based on a blackbody hot source and a perturbation analysis of the magnetic field difference method are introduced in this work. The blackbody hot source is used to evaluate the difference in the relative coefficients between the two LO hopping frequencies in the same channels. Then the coefficients are obtained by multiplying the LO hopping frequencies coefficients by LO hopping calibration coefficients. In this way, it is more flexible and stable than the in-situ calibration. The magnetic field difference method provides another calibration method to obtain the relative calibration coefficients of the electron cyclotron emission radiometers (ECE). In general, the magnetic field difference method needs two similar shots but with a difference of 2.1% (for HL-2M) in the magnetic field. Meanwhile, there are some errors because of the deviation of detection positions in the same channels between the two shots. For evaluating the calibration errors, the impact of the displacement, Te perturbation of the core region, and magnetic field difference has been discussed. The result shows that a larger magnetic field difference can improve the accuracy of the calibration. In the end, Bayesian inference has been utilized to evaluate the calibration coefficients and get the most probable calibration coefficients along with its the confidence interval

    Integrated data analysis on the electron temperature profile of HL-2A with the Bayesian probability inference method

    No full text
    Abstract Data analysis on tokamak plasmas is mainly based on various diagnostic systems, which are usually modularized and independent of each other. This leads to a large amount of data not being fully and effectively exploited so that it is not conducive to revealing the deep physical mechanism. In this work, Bayesian probability inference with machine learning methods have been applied to the electron cyclotron emission and Thomson scattering diagnostic systems on HL-2A/2M, and the effects of integrated data analysis (IDA) on the electron temperature of HL-2A with Bayesian probability inference are demonstrated. A program is developed to infer the whole electron temperature profile with a confidence interval, and the program can be applied in online analysis. The IDA results show that the full profile of the electron temperature can be obtained and the diagnostic information is more comprehensive and abundant with IDA. The inference models for electron temperature analysis are established and the developed programs will serve as an experimental data analysis tool for HL-2A/2M in the near future.</jats:p

    Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak

    No full text
    Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) Ă— 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied

    Monitoring of two-dimensional tungsten concentration profiles on the HL-2A tokamak

    No full text
    In this article, we demonstrate the inference of two-dimensional tungsten concentration profiles in tokamak plasmas, using Gaussian process tomography applied to bolometry and assuming a specific model for the tungsten cooling factor. In ITER, tungsten has been selected for divertor material due to its low tritium retention and ability to handle large heat and particle flux loads. On the other hand, this will cause tungsten impurities to enter the bulk plasma through various plasma-wall interaction processes. Therefore, a detailed understanding of tungsten impurity transport and active control of the impurity transport in tokamaks is crucial. The computational complexity of the method described in their article O(n(2)m) compares favorably to a simple least-squares approach O (n(3)), n represents the number of pixels and m the number of measurement channels, hence bringing real-time tungsten profile monitoring within reach (<10 ms repetition time). The feasibility study of this method has been demonstrated here to a discharge in HL-2A for observing the entire process of tungsten impurities entering the bulk plasma from the scrape-off layer area, tungsten pump-out by edge-localized modes, as well as the formation of a poloidally asymmetric tungsten distribution

    Study of energetic particle physics with advanced ECEI system on the HL-2A tokamak

    No full text
    Understanding the physics of energetic particles (EP) is crucial for the burning plasmas in next generation fusion devices such as ITER. In this work, three types of internal kink modes (a saturated internal kink mode (SK), a resonant internal kink mode (RK), and a double e-fishbone) excited by energetic particles in the low density discharges during ECRH/ECCD heating have been studied by the newly developed 24(poloidal) Ă— 16(radial) = 384 channel ECEI system on the HL-2A tokamak. The SK and RK rotate in the electron diamagnetic direction poloidally and are destabilized by the energetic trapped electrons. The SK is destabilized in the case of qmin > 1, while the RK is destabilized in the case of qmin < 1. The double e-fishbone, which has two m/n = 1/1 modes propagating in the opposite directions poloidally, has been observed during plasma current ramp-up with counter-ECCD. Strong thermal transfer and mode coupling between the two m/n = 1/1 modes have been studied
    corecore