229 research outputs found

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants.

    Get PDF
    A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants

    Functional Inactivation of EBV-Specific T-Lymphocytes in Nasopharyngeal Carcinoma: Implications for Tumor Immunotherapy

    Get PDF
    Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) associated malignancy with high prevalence in Southern Chinese. In order to assess whether defects of EBV-specific immunity may contribute to the tumor, the phenotype and function of circulating T-cells and tumor infiltrating lymphocytes (TILs) were investigated in untreated NPC patients. Circulating naïve CD3+CD45RA+ and CD4+CD25− cells were decreased, while activated CD4+CD25+ T-cells and CD3−CD16+ NK-cells were increased in patients compared to healthy donors. The frequency of T-cells recognizing seven HLA-A2 restricted epitopes in LMP1 and LMP2 was lower in the patients and remained low after stimulation with autologous EBV-carrying cells. TILs expanded in low doses of IL-2 exhibited an increase of CD3+CD4+, CD3+CD45RO+ and CD4+CD25+ cells and 2 to 5 fold higher frequency of LMP1 and LMP2 tetramer positive cells compared to peripheral blood. EBV-specific cytotoxicity could be reactivated from the blood of most patients, whereas the TILs lacked cytotoxic activity and failed to produce IFNγ upon specific stimulation. Thus, EBV-specific rejection responses appear to be functionally inactivated at the tumor site in NPC

    Predicting Anatomical Therapeutic Chemical (ATC) Classification of Drugs by Integrating Chemical-Chemical Interactions and Similarities

    Get PDF
    The Anatomical Therapeutic Chemical (ATC) classification system, recommended by the World Health Organization, categories drugs into different classes according to their therapeutic and chemical characteristics. For a set of query compounds, how can we identify which ATC-class (or classes) they belong to? It is an important and challenging problem because the information thus obtained would be quite useful for drug development and utilization. By hybridizing the informations of chemical-chemical interactions and chemical-chemical similarities, a novel method was developed for such purpose. It was observed by the jackknife test on a benchmark dataset of 3,883 drug compounds that the overall success rate achieved by the prediction method was about 73% in identifying the drugs among the following 14 main ATC-classes: (1) alimentary tract and metabolism; (2) blood and blood forming organs; (3) cardiovascular system; (4) dermatologicals; (5) genitourinary system and sex hormones; (6) systemic hormonal preparations, excluding sex hormones and insulins; (7) anti-infectives for systemic use; (8) antineoplastic and immunomodulating agents; (9) musculoskeletal system; (10) nervous system; (11) antiparasitic products, insecticides and repellents; (12) respiratory system; (13) sensory organs; (14) various. Such a success rate is substantially higher than 7% by the random guess. It has not escaped our notice that the current method can be straightforwardly extended to identify the drugs for their 2nd-level, 3rd-level, 4th-level, and 5th-level ATC-classifications once the statistically significant benchmark data are available for these lower levels

    Apelin Enhances Directed Cardiac Differentiation of Mouse and Human Embryonic Stem Cells

    Get PDF
    Apelin is a peptide ligand for an orphan G-protein coupled receptor (APJ receptor) and serves as a critical gradient for migration of mesodermal cells fated to contribute to the myocardial lineage. The present study was designed to establish a robust cardiac differentiation protocol, specifically, to evaluate the effect of apelin on directed differentiation of mouse and human embryonic stem cells (mESCs and hESCs) into cardiac lineage. Different concentrations of apelin (50, 100, 500 nM) were evaluated to determine its differentiation potential. The optimized dose of apelin was then combined with mesodermal differentiation factors, including BMP-4, activin-A, and bFGF, in a developmentally specific temporal sequence to examine the synergistic effects on cardiac differentiation. Cellular, molecular, and physiologic characteristics of the apelin-induced contractile embryoid bodies (EBs) were analyzed. It was found that 100 nM apelin resulted in highest percentage of contractile EB for mESCs while 500 nM had the highest effects on hESCs. Functionally, the contractile frequency of mESCs-derived EBs (mEBs) responded appropriately to increasing concentration of isoprenaline and diltiazem. Positive phenotype of cardiac specific markers was confirmed in the apelin-treated groups. The protocol, consisting of apelin and mesodermal differentiation factors, induced contractility in significantly higher percentage of hESC-derived EBs (hEBs), up-regulated cardiac-specific genes and cell surface markers, and increased the contractile force. In conclusion, we have demonstrated that the treatment of apelin enhanced cardiac differentiation of mouse and human ESCs and exhibited synergistic effects with mesodermal differentiation factors

    Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites

    Get PDF
    It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using Gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches

    A Multi-Label Predictor for Identifying the Subcellular Locations of Singleplex and Multiplex Eukaryotic Proteins

    Get PDF
    Subcellular locations of proteins are important functional attributes. An effective and efficient subcellular localization predictor is necessary for rapidly and reliably annotating subcellular locations of proteins. Most of existing subcellular localization methods are only used to deal with single-location proteins. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. To better reflect characteristics of multiplex proteins, it is highly desired to develop new methods for dealing with them. In this paper, a new predictor, called Euk-ECC-mPLoc, by introducing a powerful multi-label learning approach which exploits correlations between subcellular locations and hybridizing gene ontology with dipeptide composition information, has been developed that can be used to deal with systems containing both singleplex and multiplex eukaryotic proteins. It can be utilized to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell membrane, (3) cell wall, (4) centrosome, (5) chloroplast, (6) cyanelle, (7) cytoplasm, (8) cytoskeleton, (9) endoplasmic reticulum, (10) endosome, (11) extracellular, (12) Golgi apparatus, (13) hydrogenosome, (14) lysosome, (15) melanosome, (16) microsome, (17) mitochondrion, (18) nucleus, (19) peroxisome, (20) spindle pole body, (21) synapse, and (22) vacuole. Experimental results on a stringent benchmark dataset of eukaryotic proteins by jackknife cross validation test show that the average success rate and overall success rate obtained by Euk-ECC-mPLoc were 69.70% and 81.54%, respectively, indicating that our approach is quite promising. Particularly, the success rates achieved by Euk-ECC-mPLoc for small subsets were remarkably improved, indicating that it holds a high potential for simulating the development of the area. As a user-friendly web-server, Euk-ECC-mPLoc is freely accessible to the public at the website http://levis.tongji.edu.cn:8080/bioinfo/Euk-ECC-mPLoc/. We believe that Euk-ECC-mPLoc may become a useful high-throughput tool, or at least play a complementary role to the existing predictors in identifying subcellular locations of eukaryotic proteins
    corecore