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Abstract

Trk/Ktr/HKT transporters probably were evolved from simple K™ channels KcsA. HKT transporters, which mediate
Na*-uniport or Na*/K™-symport, maintain K*/Na* homeostasis and increase salinity tolerance, can be classified
into three subfamilies in higher plants. In this review, we systematically analyzed the characteristics of amino
acids sequences and physiological functions of HKT transporters in higher plant. Furthermore, we depicted the
hypothetical models of cations selection and transportation mediated by HKT transporters according to the highly
conserved structure for the goal of better understanding the cations transportation processes.
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Introduction
Sodium (Na), unlike potassium (K), is not an essential nu-
trient element for the most of higher plants but may be a
beneficial element for some species [1-3]. In higher plants,
Na* could act as an osmoticum and temporarily substitute
for K* in deficiency or insufficiency of K* [4-6]. Na" is
able to stimulate growth of fungi and plants as long as the
accumulation and compartmentalization are efficiently
controlled below a limited concentration at the cell and
tissue levels [6-9]. Excessive Na' in the external environ-
ment could lead to the detrimental effects on plant
growth, and even cause plant death. The toxic levels did
not defined in detail and were supposed to depend on cell
types [9], but it is viewed that the cytosolic concentration
of Na* should not be higher than 10-30 mM [10]. Add-
itionally, tissue K*/Na" ratio is a widely used parameter in
discriminating genotypes for salinity tolerance of higher
plants [11-20]. Plants can maintain high cytosolic K*/Na*
ratio through excluding Na* from shoots and accumulat-
ing K* in shoots [21-28].

For resisting Na* toxicity, plants developed three mech-
anisms for salinity tolerance to maintain potassium/
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sodium homeostasis (Figure 1): 1) Na" exclusion from
the shoot, 2) Na" tissue tolerance and 3) osmotic toler-
ance [29,30]. Till now, a series of transporter systems
have been reported which help plants to improve salin-
ity tolerance by inhibiting Na" influx, enhancing Na*
efflux, or mediating the sequestration of Na* into the
cell vacuoles (Figure 1). Simplified model for mecha-
nisms of K*/Na" absorption, recirculation and extru-
sion by different classes of Na" channels/transporters
are shown in Figure 1, such as nonselective cation
channels (NSCC) [31-33], cation-Cl~ co-transporter
(CCC) [34], low-affinity cation transporter (LCT)
[35,36], salt overly sensitive 1 ( SOS1) [37-41], Na*/H"*
antiporter NHX1 [42-46] and high affinity potassium
transporter (HKT/HAK) [27,28,47-50]. Plant root cells
generally take up Na*/K" from soil through some chan-
nels (NSCCs, AKT1, LCT1 and CCC), transporters
(KUP/HAK/KT and HKT) and apoplastic. Channel per-
meations and apoplastic are the main pathways of Na*
influx under salt tress. The SOS pathway mediates ef-
flux of Na™ cross the plasma membrane to the soil solu-
tion or apoplast. NHX1 partitions Na® within vacuole
and jointly regulates the cytosol Na* concentrations.
AtHKT1;1, OsHKT1;5, TaHKT1;5 and TmHKT1;4/5 re-
trieve Na" from the xylem into the xylem parenchyma
cell and prevent the shoot from Na" over-accumulation
damage. It is hypothesized that AtHKT1;1 mediates
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Figure 1 K*/Na* homeostasis in higher plants. Plant root cells generally absorb Na*/K" from soil through different channels (NSCCs, AKT1, LCT1,
CCQ), transporters (KUP/HAK/KT and HKT) and apoplastic. Channel permeations and apoplastic are the main pathways of Na* influx under salt stress. In
the SOS pathway Na* crosses the plasma membrane to the apoplast or soil solution and the NHX1 partitions Na™ within vacuole and jointly regulate
the cytosol Na* concentrations and play a vital role in response to salt stress. AtHKT1;1, OsHKT1;5, TaHKT1;5 and TmHKT1:4/5 retrieve Na* from the
xylem into xylem parenchyma cell and prevent the shoot from damage caused by Na* over-accumulation. It is hypothesized that AtHKT1;1 mediates
recycling Na™ from the shoot to root through removal of Na* from the xylem and loading Na™ into the phloem sieves. These processes assure
a normal K*/Na* homeostasis and maintain a high K*/Na" ratio to rescue plants when suffering from salt stress. NSCC, nonselective cation channels;
CCC, cation-Cl — co-transporter; LCT, low-affinity cation transporter; SOST, salt overly sensitive 1; NHX1, Na*/H" antiporter 1.
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recycling of Na® from the shoot to root through re-
moval of Na* from the xylem and loading Na" into the
phloem sieves. These processes assure a normal K'/Na*
homeostasis and also maintain a high K*/Na" ratio to
rescue plants when suffering salt stress.

HKT transporters belong to a superfamily of Trk/Ktr/
HKT and play a vital physiological roles in plants. Plant
HKT transporter is a multiple cation uptake system,
which can mediate Na* uniport, Na'/K*-symport and
even Mg”*/Ca** permeation. Function of plant HKTs de-
pends on its structure. Therefore, for better understanding
how HKT transporters work in higher plants, it is neces-
sary to construct a model of cations uptake mediated by
HKT transporters through systematically analyzing the
conserved structures of HKTs. In this article we hypothe-
sized a model of cations selection and transportation me-
diated by HKT transporters.

Three subfamilies of HKT transporters
HKT genes encode high affinity potassium transporters
in plants and available evidences support that HKTs can

be classified into three subfamilies (i.e. subfamily I, sub-
family II and subfamily III) according to the phylogen-
etic analysis based on amino acids of HKTs (Figure 2).
Till now, we can retrieve more than one hundred mem-
bers of HKT transporters from published papers and
gene (or protein) databases. The number of HKT trans-
porters in higher plants shows a striking difference
among different species. Researchers already identified
several HKT-like genes in wheat, at least nine in rice,
but unique in Arabidopsis and Physcomitrella patens,
since TuHKT2;1 (originally named HKTI) was firstly iso-
lated from wheat roots. It is certain that the monocotyle-
don contain more HKT transporters than dicotyledon.
In addition, HKT transporters of subfamily I were iso-
lated both in the dicotyledon and monocotyledon, but
HKTs of subfamily II were isolated only in the mono-
cotyledon. Some HKT transporters have been found in
the more primitive higher plants, such as Selaginella
moellendorffii and Physcomitrella patens. Phylogenetic
analysis showed that this kind of HKTs should be classed
to subfamily III (Figure 2).
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moellendorffii; Pp, Physcomitrella patens.

Figure 2 Phylogenetic analysis of HKT transporters in higher plants. Subfamily | of HKT transporters are all characterized by “Ser” in the first
loop (Pa). Subfamily Il and Il have the GlyGlyGlyGly-type characteristic in the amino acid sequences exception of OsHKT2;1. At, Arabidopsis thaliana;

Ts, Thellungiella salsuginea; Pt, Populus trichocarpa; Mc, Mesembryanthemum crystallinum; v, Vitis vinifera; Ec, Eucalyptus camaldulensis; Sb, Sorghum
bicolor; Ss, Suaeda salsa; Zm, Zea mays; Sab, Salicornia bigelovii; Os, Oryza sativa; Hv, Hordeum vulgare; Bd, Brahypodium distachyom; Tm, Triticum
monococcum; Ta, Triticum aestivum; Tt, Triticum timopheevii; Gm, Glycine max; Put, Puccinellia tenuiflora; Pha, Phragmites australis; Sm, Selaginella

Subfamily I members of HKT transporters contain a
highly conserved serine (Ser) residue in the first motif
MPsM, whereas subfamily II members primarily have
glycine (Gly) residue with the exception of OsHKT2;1.
Mutation from Ser to Gly change the affinity to cations
[6,48,51,52]. Subfamily III members are similar to sub-
family IT with typical GlyGlyGlyGly-type feature. It is hy-
pothesized that subfamily III transporters have the
characteristics of K*-Na" co-transport but there are few
reports [52].

Structure of HKT transporters in higher plants

HKTs in Plant and Ktr/Trks in bacteria/fungi contain
four MPM motifs which might be evolved from simple
K* channels KcsA [47,53-62]. Two transmembrane heli-
ces (M; and M,) and a reentrant loop (P segment) com-
pose the basic motif (MPM motif). Hydropathy plot
analysis of Trk/Ktr/HKT systems initially supported a
structural model comprising of 8-12 transmembrane
segments [53,63-65]. Although every MPM evolved from
bacteria KcsA, the four MPM motifs are not simple re-
peats and they have their own features which determine

the selectivity of cations. In fact, the similarity between
every two MPMs is less than 30%. Alignment analysis
suggested that the fourth MPM motif is the most con-
served subunit which is almost similar to KcsA. Bacterial
Trk and Ktr are associates with an ion-conducting trans-
membrane subunit and at least one peripheral regulatory
subunit derived from the cleavage of the cytoplasmic C-
terminal domain of Trk/Ktr channel [54,55]. Whereas,
no regulatory subunit is found in the single amino acid
chain systems of fungal Trk and plant HKT transporters
till now.

In higher plants, HKT transporters contain some highly
conserved amino acid residues which may play a vital
function. A Gly or Ser residue in MP,M motif (first
motif) determines the permeability of K" or Na" [53].
Plant HKTs act as a Na*-K* symporter when Gly exists in
MP,M motif. However, HKT transporters merely show
Na" selective-permeability when Gly is substituted by Ser.
Therefore, plant HKTs can be classified to SerGlyGlyGly-
type and GlyGlyGlyGly-type.

According to the classical structural model, HKT
transporters contain four MPM motifs which might be
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evolved from the simple K" KesA. But, multiple align-
ments show that the fourth motif MPpM is divided into
two segments (Figure 3). The fourth signature Gly is lo-
cated in the first segment and the second segment con-
tains three highly conserved amino acid residues, which
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are cysteine (Cys), lysine (Lys) and arginine (Arg). Two
highly conserved positive amino acid i.e. Arg (R) and Lys
(K) residues in the MPpM (Figure 3) are not replaceable.
These positive residues, which are conserved in many

" channels, contribute to cation transport activity [66].

-

C: cysteine (Cys); K: lysine (Lys); R: arginine (Arg).
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Figure 3 Multiple alignment of plant HKTs. The highly conserved signature residues were marked with bold triangle. G: glycine (Gly); S: serine (Ser);
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Kato et al. thought that both Lys and Arg residues face
towards the ion conducting pore side, and a salt bridge(s)
exists between positive residues in MPpM motif and
conserved negative residues in the pore region to re-
duce electrostatic repulsion against cation permeation
caused by the positive residue(s) [66]. This salt bridge
may help stabilize HKTs configuration [66]. Therefore,
the MPpM motif may be regarded as an independent
functional motif because of the separate location and
having the quite different role comparing with the
other MPM motifs. In addition, it deserves paying close
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attention to another highly conserved amino acid, cyst-
eine (C) in the fourth motif (C1 and C2 marked with
bold triangle in Figure 3).

For obtaining more information about the structure
of HKT, the transmembrane structure and hydrophobic
features were analyzed through the HMMTOP method
(http://www.enzim.hu/hmmtop/index.php). Results of
hydrophobicity prediction showed that C-terminal is
faced toward intracellular and N-terminal is faced toward
extracellular in most of the plant HKT transporters
(Table 1). And this result suggests that N-terminal of

Table 1 The location of N/C terminal and signature residues, and potential transmembrane helix number (THN)

Name N-Ter Gy/S G, G3 Gy (& G K R THN C-Ter
AtHKT1;1 inside H H o i i H i 12 inside
ThHKT1;1 inside H H o H (@] 0 H i 10 inside
OsHKT1;1 outside | H o i i i i H 10 outside
EcHKTT;1 inside H H o H (@] o H i 12 inside
PtHKT1;1 outside H H i H o) e) H i 11 inside
McHKt1;1 inside H H i H 0 0 H i 12 inside
McHKT1;2 inside | H o H 0 o H [ 10 inside
OsHKT1;3 outside i H o H i i H f¢) 10 outside
TmHKT1;4A1 inside o) H i H o) o H i 10 inside
TmHKT1;4A2 inside o H i H o o H i 10 inside
SbHKT1:4 outside o) H i H o o H i 11 inside
OsHKT1;:4 outside H (0] i H o) o H i 11 inside
TmHKT1;5 outside H H i H o} o H i 13 inside
TaHKT1;5 outside H (0] o H @] 0 H i 9 inside
TtHKT1;5B2 outside H (0] o H 0] o H i 9 inside
HVHKT1;5 inside o H i o o o o H 10 inside
ZmHKT1:5 inside H H i o o 0 o) H 10 inside
OsHKT1;5 outside H (0] i (@] o) (@] O (@] 10 outside
OsHKT2;1 outside H H o o i i H o 12 outside
PhaHKT2:1e outside H H o le) (0] (@] o) H 11 inside
TaHKT2;1 inside H (0] i 0 o) o o) H 12 inside
HvHKT2;1 outside H H i o o o o} H 11 inside
PUtHKT2;1 inside H H i 0 o) le) o) H 12 inside
PhaHKT2;1n outside H H o 0 0] (@] o) H 11 inside
OsHKT2;2 outside H o] o o) o] 0 ) o) 8 outside
SbHKT2:3 outside H (@] o H (@] o) H i 9 inside
OsHKT2;3 outside H 0] i H o) e) H i 11 inside
OsHKT2;4 inside H H i H o H i 12 inside
PpHKT3;1 outside H H H (@] (@] (@] O (@] 8 outside
SMHKT3;1 inside o) 0] o H H i H l¢) 9 outside
SmMHKT3;2 inside o} H i H o} e} H i 10 inside
SMHKT3:4 inside H H o H o) e) H i 11 outside
SMHKT3;5 outside H H i H i i H l¢) 11 inside

Abbreviations represent: H, membrane helix; |, inside loop; i, inside helix tail; O, outside loop; o, outside helix tail. G: glycine (Gly); S: serine (Ser); C: cysteine (Cys);

K: lysine (Lys); R: arginine (Arg).
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HKT may be in charge of catching ions but C-terminal
is responsible for regulating the permeability. This can
explain why HKT transporters mediate a cation from
external environment into cytoplasm. The number of
transmembrane helixes in HKT transporter ranges from
eight to thirteen. There are some loops (the longer part
of a sequence outside of the membrane, which can
form a domain or a simpler structure) and (or) tails
(the elongation of the membrane helix, it can be
followed by a loop or another tail, forming a short loop
interacting with the outside or inside part of the mem-
brane) between two transmembrane helixes. According
to the classical model, the signature Gly (G) and Ser (S)
residues were thought to be probably seated in loops
between two transmembrane helixes. In fact, the situation
may be more complicated because the signature Ser/Gly
can be situated in the every structure — membrane helix,
inside loop, inside tail, outside loop and outside tail. How-
ever, the widespread pattern are: 1) G;/S, G, and Gy (espe-
cially G;/S) are mainly located in membrane helix; 2)
Nearly all the third glycine residues lie in the helix tail;
3) Two conserved cysteine residues (C; and C,) do not
lie in the transmembrane helixes except for SmHKT3;1
transporter; 4) For lysine and arginine, if one lies in
helix another lies in helix tail with few exceptions
(Table 1). In addition, we depicted the typical structure
of AtHT1;1 transporter (shown in Figure 4). Except for
the twelve transmembrane helixes, AtHT1;1 transporter
contains sixteen helix tails but only five loops.

There are two interesting exceptions OsHKT2;2 and
PpHKT3;1 which functions did not follow the universal
principles. OsHKT2;2 share 91% identity with OsHKT2;1
in amino acid sequences. OsHKT2;1 mediates Na" uptake
both in plant and heterologous systems. In contrast,
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OsHKT2;2, previously found to be a pseudogene in
Nipponbare rice (japonica rice) but not in indica rice
[60]. Furthermore, at millimolar Na* concentrations,
OsHKT2;2 mediated Na* influx into plant cells without
adding extra cellular K" [67]. PpHKT3;1 (originally
named PpHKT1) transporter is the unique one in Phys-
comitrella patens and characterizes with Gly in the first
motif. However, PpHKT1 transporter mediated K* and
Na® influx but not high-affinity Na" uptake because
Pphkt]l mutant plants maintain normal K* and Na* in-
flux [52]. Screening of the transmembrane and topology
structure, we found that OsHKT2;2 and PpHKT1 trans-
porter only contain eight transmembrane helixes, and
signature conserved residues are mainly located outside
of the cytomembrane (Table 1). These different struc-
ture characteristics may be the reason for the different
phenomena on cations uptake.

Various cations transport characteristics based on amino
acid sequences in higher plants

SerGlyGlyGly-type characteristic determines the HKT as a
Na"-uniporter. All HKT members in subfamily I are char-
acterized by SerGlyGlyGly. Either in dicotyledons or
monocotyledons, most of the HKT members of subfamily
I have been looked upon as Na*-specific transporters [60].
In Arabidopsis genome, AtHKTI;1 is the unique member,
which is mainly expressed in xylem parenchyma cells
[27,48,68,69]. AtHKT1;1 mediates Na* but small degree
K" influx into cells when heterologously expressed in Xen-
opus laevis oocytes and Saccharomyces cerevisiae [47]. In
addition all the identified mutants of AtHKT1;1 have been
found to be salt sensitive and Na' over-accumulation
in aerial organs but Na® under-accumulation in roots
[27,48,68,70,71]. Thus AtHKT1 decreases Na* concentration

-
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Figure 4 Structure of AtHKT1;1 transporter. The letters with red font represent the highly conserved amino acid resides which may play crucial
functions on cation selection and transport. H, membrane helix; |, inside loop; i, inside helix tail; O, outside loop; o, outside helix tail.
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in the transpiration stream and increase salinity tolerance
following two patterns: 1) Na" retrieval in the root
through unloading sodium directly from the xylem sap to
xylem parenchyma cells, and 2) Na* recirculation in shoot
through removal of Na® from the xylem sap and then
transporting Na" from phloem companion cells into the
phloem sieves. Both pathways can effectively minimize
the over-accumulation of Na* in shoot and thus protect the
leaves from salt damage when suffering from salt stress
(Figure 5). Additionally, earlier investigations indicated that
over-expression of AtHKTI;1 in specific cell types could
modify Na* transport process with the reduction of shoot
Na" accumulation and thus improve salinity tolerance.
Moller et al. [72] revealed that Na* accumulation was de-
creased from 37 to 64% in shoot because of increased influx
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of Na" into root stellar cells when overexpressed AtHKT1;1
in the mature root stele [72]. Rice obtained higher Na*
exclusion and salinity tolerance when AtHKTIL;1 was
expressed in the root cortical and epidermal cells [73].
These results have implied that the alteration of a specific
Na*® transport process in specific cell types leads to a
decrease of shoot Na" accumulation, which is a mech-
anism of salt stress in higher plants [73,74]. In the various
mechanisms of salt tolerance (mentioned above), osmotic
tolerance or tissue tolerance, mediated by other channels
and transporters, might be more important in enabling
Arabidopsis plants to grow in saline conditions than Na*
exclusion [75-77].

EcHKT1;1/2 from Eucalyptus camaldulensis can medi-
ate both Na* and K" influx when expressed in Xenopus

PAC

HK);‘iiS-like

-————— Na’

Xylem

;1-like
Na®

EPC/COC

ENC

Figure 5 Functions of HKT transporters in higher plants. The transporters of HKT2;1-like, including OsHKT2;1, HVHKT2;1 and TaHKT2;1, mediate
Na* uptake from culturing media merely in K*-starved environments. HKT transporters, such as AtHKT1;1, OsHKT1;5, TaHKT1;5-D, TmHKT1;4-A2 and
TmHKT1;5-A are involved in Na* exclusion from xylem to xylem parenchyma cell in order to minimize the accumulation of Na* in the shoot through
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oocytes [56,78]. McHKT1;1/2, characterized from Mes-
embryanthemum crystallinum, can conduct K'-Na*
co-transport or K* uptake in heterologous expression sys-
tems [59]. McHKT1;1 and TsHKT1;2 were up-regulated
after a sudden increase of external NaCl [59,79,80].
TaHKT1;5-D, TmHKT1;4-A2(Nax1) and TmHKT1;5-A
(Nax2), AtHKT1;1 homologs, mediate Na® uptake in
xylem parenchyma cells and Na" loading into the phloem
sap, thereby improve the salt tolerance [81-87]. OsHKT1;5
(OsSKC1), located in parenchyma cells surrounding the
xylem vessels, is likely to function in loading Na* from the
xylem into the xylem parenchyma cells [26]. TmHKT1;4-
A2 expressed in roots and leaf sheaths of a salt-tolerant
durum wheat line 149, and mediated Na* influx from
xylem sap to the xylem parenchyma cells [82,88].
TaHKT1;5-D and TmHKT1;5-A mediated Na* trans-
portation from roots xylem then and maintained a high
K*-to-Na™ ratio in the leaves [81,84,86]. In addition, func-
tional analysis in Xenopus laevis oocytes revealed that
OsHKT1;1 and OsHKT1;3 are permeable to Na* only, but
are strongly different in terms of affinity and direction of
transport (inward only or reversible) [60,89].

OsHKT2;1 is the unique member characterized by
SerGlyGlyGly in subfamily II. OsHKT2;1 is mainly
expressed in cortical and endodermal cells of roots and
vascular bundle regions of leaves [6]. OsHKT2;1 dis-
plays three models of ion selectivity according to exter-
nal K" and/or Na" in heterologous expression systems
i.e. OsHKT2;1 acts as 1) Na*-K" co-transporter at sub-
millimolar level of external Na* and K, 2) Na* uniport
when the external Na® content is within or above the
millimolar range or when the external K* is in the sub-
millimolar range 3) and nonconductive states within
the millimolar to 10 mM range of external K* [89]. The
in vivo functional analysis demonstrated that Na* en-
hanced growth of rice under K" starvation conditions,
and OsHKT2;1 is the central transporter for nutritional
Na" uptake in case of K*-starved rice roots [6,67].

GlyGlyGlyGly-type feature decides the Na*/K"-symport.
The first motif MP,M contains a Gly residue in all the
HKT members of subfamily II with the exception of
OsHKT?2;1 (previously named OsHKT1) [45,65,74,90,91].
In wheat and barley roots, TaHKT2;1(TaHKT1) and
HvHKT2;1 (HVHKT1) mediate Na* uptake at K*-starved
situation [61,92]. OsHKT2;2 is one of the typical HKT
transporters of subfamily II with GGGG-type amino acids
sequence in rice, which has been found to be permeable
to both K" and Na* [57,67,91]. Kader et al. [93] reported
that expression of the OsHKT2;2 gene is detected in the
phloem of leaves when treated with 150 mM NaCl [93].
TaHKT2;1 in wheat, PhaHKT2;1 in Phragmites austra-
lis and HVHKT2;1/2 in Tibetan wild barely have been
shown at least two transport modes in heterologous
expression systems, K*-Na" co-uptake and Na" influx
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at high Na®" concentrations [66,69,94-97]. However,
OsHKT2;4 showed different cation selectivity. OsHKT2;4
transporter, unlike with the other subfamily IT HKT trans-
porters, mediates robust inward K* currents even without
the addition of extracellular Na" in heterologous expres-
sion systems, and also functions as a Mg”* and Ca** per-
meable channel in the absence of competing K* ions
[98-100]. This implies that OsHKT2;4 is likely to be more
important in K" homeostasis as a K" transporter/channel
than a Na*-K" co-transporter [99,100].

HKT transporters in subfamily III are similar to subfam-
ily I members with the characteristics of GlyGlyGlyGly,
but their functions are uncertain. The phylogenetic ana-
lysis reveals that all the HKTs of subfamily I and II are be-
long to flowering plants, but the remainders are collected
from some primitive higher plants such as PpHKT in
Physcomitrella patens and SmHKTs in Selaginella moel-
lendorffii (Figure 2). Thereby, these HKTs may be catego-
rized into subfamily III because they are more identical
with the ancestral transporters Trk in yeast. PpHKT3;1
(originally named PpHKT1) which was identified as a
unique HKT gene in Physcomitrella patens [5,101,102].
Regretfully, Pphktl mutant plants maintained normal K*
and Na" influx and thus PpHKT1 transporter did not me-
diate high-affinity Na® uptake [52]. Consequently, the
functions of subfamily III HKTs still remain unknown,
and further studies are imperative.

Cation selection model mediated by plant HKT
transorters

In bacteria, archaea, fungi and plants the Trk/Ktr/HKT
transporters are the key factors of osmotic regulation, pH
homeostasis and resistance to drought and high salinity
[16,72-74,103]. These cation transporters are functionally
diverse i.e. Na" uniporter, Na*/K" symporter and even di-
valent cation transporter [9,15-20,50,104,105]. However,
some key informations are still unclear: 1) How do HKTs
specifically catch the cations? 2) How do the energy
transfers and exchanges since the K*/Na* transport me-
diated by HKTs is an active pathway? 3) What is the
mechanism(s) to monitor K'/Na* concentration to regu-
late gene expression and transport activities? The crystal
structure of a Ktr K* transporter from Bacillus subtilis
and TrkH from Vibrio parahaemolyticus showed that Ktr
and TrkH were resembled K* channel [106,107]. KtrB and
TrkH assemble with KtrA and TrkA respectively. The ac-
tivities of Trk and Ktr are upregulated by ATP respectively
via TrkA and KtrA [106,107]. This suggests a mechanism
for how ATP activates the activity of TrkH and Ktr by in-
ducing conformational changes.

Additionally, two highly conserved positively charged
arginine (R) and lysine (K) residues are present in the
MPpM helix of plant HKT transporters (Figure 3). Lack-
ing of arginine (R) or lysine (K) could cause the functional
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loss of HKT transporters (Figure 6). Cation transporters
require a barrier to prevent free diffusion of ions along
their electrochemical gradient, and it is possible that the
positive residues within the transporter’ pore could help
to regulate its activities. Individual replacement of positively
charged residues in the MPpM helices with glutamine
(GIn) did not abolish the cation uptake activity of plant
HKTs, indicating that exchange of one of the positively
charged residues in the MPpM helix of plant HKTs with a
hydrophilic residue can be tolerated [66]. Replacing of two
or more positively charged residues with glutamine caused
a considerable loss of activity in TaHKT2;1 [66]. It is hy-
pothesized that lysine and arginine residues form a salt
bridge(s) in the MPpM to help to stabilize HKTs con-
figuration [66]. Here we are suggesting another model
for explain how the positive arginine and lysine work
(Figure 6b and c). Generally, the arginine and lysine are
positively charged and the electrostatic repulsion will
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refuse cation permeation from pore folded by HKT into
the cell. The MPpM helix with positive residues can be
looked as a cation barrier or switch. A certain activator
would arouse the conformational change of barrier and
then the switch will turn on (Figure 6b and c). ATP is a
general energy driving ion transportation on membrane
and this process is companied with the transporter phos-
phorylation which will trigger structural change and ion
permeation [106-108]. Plant HKTs may be activated by
this manner in a view of the universal mechanism about
molecular switch mediated by phosphorylation. Probably,
the highly conserved hydroxyl amino acid resides, such
as serine (S), threonine (T) and tyrosine (Y) in the MPp,M
(S, T and Y rich region in Figure 3), contribute to this
phosphorylation process. However, no evidence indicates
that HKTs are related with activity of ATPase up to date.
Researchers still need to keep searching for which ATPase
mediates the phosphorylation process.

Mg Ca™
Na K

MgF Ca™

N K- OUTSIDE

Activator: ATP?

Activator: ATP?

INSIDE

e OUTSIDE

INSIDE

ATP  ADP

ATP  ADP

Figure 6 Model of cation trapping and selection of plant HKTs. a) Four glycine (G) residues form a trap space and allow Na*, K*, Mg”* and
Ca’* across. Serine (S) and three glycine (G) residues form a trap space and allow Na* across. b) and ¢) Positive arginine (R) and lysine (K) residues
form a cation barrier to stop cation across.
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Considering all the former evidences, we think that
plant HKT transporter may be able to perform ion
transportation following this hypothesis cation selection
model (Figure 6). Plant HKTs include SerGlyGlyGly-
type and GlyGlyGlyGly-type transport. SerGlyGlyGly-type
HKTs mainly mediate Na" uniport but GlyGlyGlyGly-type
HKTs are diversified characteristics for cations selectivity.
This class of HKTs can mediate Na"-K'symport and even
divalent cations transport [57,67,100]. According to the
helical wheel model structure [54], the four signature
residues form a space which works as a cation trapping
site (Figure 6). Gly is the smallest amino acid and Ser
has polarity. Therefore, the space assembled by GlyGly-
GlyGly is more flexible than SerGlyGlyGly. The more
flexible space lets plant HKTs to catch more type of
cations, such as divalent Mg®*/Ca®* and bigger K*. As
an activator, ATP can drive structure conversion of
plant HKTs and the switch on (Figure 6). That process
possibly accompanies with phosphorylation of serine,
threonine or (and) tyrosine in the MPpM motif. This
cation selection model could be used to explain why
GGGG-type HKTs show more complicated features on
cation selectivity than SGGG-type.
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Hypothesis on HKT polymer

TrkH transporter may play a role of K transport through
assembling to tetramer [54,106]. Interestingly, there are
two highly conserved cysteine residues (Cl1 and C2
marked with bold triangle in Figure 3) in MPp,M motif ac-
cording to the multiple alignments. These conserved cyst-
eine residues (C; and C,) mainly lie in helix tail but not
transmembrane helixes (Table 1 and Figure 4). Functional
complementation experiments in yeast trkltrk2 mutant
and Na' hypersensitive mutant suggests that these two
cysteine residues are indispensable (Figure 6). In tissues of
organisms, a crucial function of cysteine residues is to
cross link of proteins or protein subunits through disulfide
bonds. This indicates that chains of HKT may be able to
assemble a dimer or a tetramer through the two cysteine
residues (Figure 7). In this model, cysteine residues can
stabilize the structure configuration of HKTs. Positive re-
sides of two or four group of arginine (Arg) and lysine
(Lys) can make a cation barrier or switch which usually
turn off, but the switch will be turned on when an activa-
tor binds to the MPpM motif (Figure 6). Additionally,
more Gly or Ser residues will be involved in the forming
of cation trap/space according to the HKT polymer

Cation barrier

\

S-S

S-S
MPpM
MP,M
MPpM

MP,M +

Cation trap
a

Cation trap

Figure 7 Hypothesis of HKT polymer model. Two highly conserved cysteine (Cys) residues form disulfide bonds to help HKTs to assemble a
dimer or tetramer and stabilize the structures. Positive arginine (Arg) and lysine (Lys) residues form a cation barrier to stop cation across. Two/four
serine (Ser) or glycine (Gly) residues form a cation trap for plant HKTs specifically selecting cation. a) dimer model and b) tetramer model.
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model, and this situation provides plant HKTs with more
flexibility on cations selection.

Conclusions and future directions

Trk/Ktr/HKT were generally thought to be evolved from
the bacterial KcsA K™ channel [109] and contain four con-
served MPM motifs [55,58,65,110]. Results of phylogen-
etic analysis showed that plant HKTs can be classified to
three subfamilies. Subfamily I was characterized by Ser-
GlyGlyGly but subfamily II and III were GlyGlyGlyGly-
type HKTs exception of OsHKT2;1. Till now, the
physiological functions of HKTs in higher plant have
been well understood. GGGG-type HKTs are Na’-K*
co-transporters, and SGGG-type HKTs present Na*
specific-selectivity.

Former model about cation selectivity of plant HKTs em-
phasizes on the vital function of first motif MPAM based
on the diversity of signature residues. In fact, there are
some key questions still unsolved. Firstly, it is needed to be
further clarified in the details of molecular mechanism that
how plant HKTs specifically trap a certain cation. Secondly,
what energy materials take part in the active transport
mediated by plant HKTs, and how the energy transfers and
exchanges. We supposed that the fourth motif MPp,M also
have same importance for cation permeation conducted by
plant HKTs since this motif is more conserved than other
MPMs. Highly conserved positive residues arginine and
lysine in MPpM may be a cation barrier/switch which pre-
vents cation permeation along the pore folded by HKT into
intracellular. A certain activator, most probably ATP, binds
to MPpM motif (or another motif) and drives the conform-
ational change of HKTs, and then the cation switch turned
on (Figure 7). Moreover, protein chains can be cross-linked
through disulfide bonds condensed by cysteine resides.
Interestingly, there are exactly two highly conserved cyst-
eine residues in motif MPpM. Therefore, we hypothesize
that plant HKTs possibly assemble to a dimer or tetramer
through the two conserved Cys residues based on tetra-
meric model for the Trk family of symporters [54,106].
However, the model of cations transport through HKT
transporters still need be supported by more experimental
evidences ie. 1) functional identification about specific
amino acid mutations, 2) high-resolution distribution
of HKT in membrane, 3) determination of chemicals
related to energy transformation 4) and especially
crystal structure interpretation of plant’ HKTs.
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