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Abstract: Traditional rotor dynamics mainly focuses on the steady state behavior of the rotor and shafting. 

However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is 

frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting 

transient state inevitably involves multi-parameter domain, multi-field coupling and coupling dynamics. In this 

paper, the relative value form of the Lagrange function and its equations have been established by 

defining the base value system of the shafting. Taking the rotation angle and the angular speed of the 

shafting as a link, the shafting lateral vibration and generator equations are integrated into the 

framework of the generalized Hamiltonian system. The generalized Hamiltonian control model is thus 

established. To make the model be more general, additional forces of the shafting are taken as the 

input excitation in proposed model. The control system of the HTGS can be easily connected with the 

shafting model to form the whole simulation system of the HTGS. It is expected that this study will 

build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to 

investigate coupling dynamic mechanism between the shafting vibration, transient of hydro turbine 

generating sets and additional forces of the shafting. 
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Nomenclature 

c1   damping coefficients of the generator rotor 

c2   damping coefficients of the turbine runner 

D   the damping coefficient 

e1     mass eccentricity of the generator rotor 

e2     mass eccentricity of the turbine runner 

Ef   output of excitation controller 

Eq'  internal transient voltage 

Fx1, Fy1  the x- and y-direction additional forces 

acting on the generator rotor 

Fx2, Fy2  the x-and y-direction additional forces 

acting on the hydro turbine runner 

H   the Hamiltonian function 

J    the rotary inertia of the HTGS 

J1   rotary inertia of the generator rotor 

J2   rotary inertia of the turbine runner 

k1   stiffness of the up guide bearing 

k2   stiffness of the lower guide bearing 

k3   stiffness of the hydro turbine bearing 

L    the Lagrange function 

m1    mass of the generator rotor 

m2   mass of the hydro turbine runner 

MgB  the generator rated torque 

Mg   the generator magnetic torque. 

Mt   the hydro turbine torque 

pi    the generalized momentums 

Qx1, Qy1 the external forces acting on the 

generator rotor 

Qx2, Qy2   the external forces acting on the 

hydro turbine runner 

R1    radius of the generator rotor 

R2   radius of the hydro turbine runner 

r1   radial displacement of the generator rotor 

r2   radial displacement of the turbine runner 

r3   radial displacement of the up guide bearing 

r4   radial displacement of lower guide bearing 

r5     radial displacement of turbine bearing 

SgB  the generator rated power 

T    total kinetic energy of the HTGS 

Tj   inertia time constant of the generator 

Tj1   inertia time constant of the generator rotor 

Tj2   inertia time constant of the turbine runner 

Td0'  the time constant 

U   elastic potential energy of the HTGS 

Us   the infinite bus voltage 

x1, y1  central coordinates of the generator rotor 

x10, y10  mass coordinates of the generator rotor 

x2, y2  central coordinates of the turbine runner 

x20, y20  mass coordinates of the turbine runner 

Xad   the d-axis armature reaction reactance 

Xd   the d-axis synchronous reactance 

Xd'   the d-axis transient reactance 

Xf   the excitation winding reactance 

XL   the transmission line reactance 

Xq   the q-axis synchronous reactance 

XT   reactance of transformer 

δ    rotor angle 

φ    rotation angle of the generator rotor   

ω    angular speed of the HTGS 

ωB   basic value of electrical angular speed 

ωe   electric angular speed 

ωmB  basic value of mechanical angular speed 

1 Introduction 

The rotor dynamics mainly investigates the 

steady state behavior of the rotor and the shafting. 

However, for the system which frequently 

performs control and regulation, the shafting 

safety and stabilization in transient state is a key 

factor. Typical example is the hydro turbine 

generating sets (HTGS). The study for the 

shafting transient state inevitably involves multi-

parameter domain, multi-field coupling and its 

coupling dynamics, which need to be integrated 

into a uniform framework.  

With the development of the computational 

mechanics, methods based on finite element 

calculation (e.g. the shafting computational 

model [1,2]), the simulation computation [3,4], 

the faulty diagnosis [5,6], and the active 

control [7,8] have been developed to 

investigate the rotor dynamics. Though some 

achievements have been made using these 

approaches, it is still difficult to directly 

analyze the shafting transient state generated 

arising coming from control and regulation of 

the HTGS [9]. In the theories of the shafting 

vibration for the HTGS, the generator rotor, 

bearing and turbine runner are usually 

simplified as the equivalent elements to form 

the basic shafting model [10,11]. The central 

coordinates of the generator rotor and turbine 

runner are employed to build two group 

differential equations for motion, including the 

support action of the bearing [12,13]. Based on 

this, other factors arising from different 

purposes are transformed as additional forces 

and are added into the corresponding equations. 

For example, the magnetic pull is added into 

the motion equations of the generator rotor to 

consider the unbalance magnetic pull [14,15]; 

the sealing force is added into the motion 

equations of the hydro turbine to consider the 

sealing of hydro turbine [16]; the fluid inertia 

and angular momentum are added as additional 

force of the turbine runner [17]. The modeling 

of the multiple coupling vibration is similar to 

this approach [18,19]. As such, the shafting 

model is governed by more complex second 



3 

order differential equations. If the magnetic 

transient of the generator is considered, the 

shafting model will be more complex [20]. In 

principal, these approaches transform the 

shafting system into autonomous system with 

no-input excitation. However, differential 

equations model cannot treat the effects and 

action mechanism between the basic shafting 

model and additional forces. 

The development of nonlinear science, 

particularly the bifurcation and chaos theory, 

brings new approaches and ideas for studying 

the nonlinear dynamic characteristics of the 

rotor. The differential equations model of the 

system is established according to the structure 

characteristics of the rotor and shafting. 

Various factors, such as the interaction between 

the torsion and the lateral vibrations [21], the 
lateral-torsional coupling [22], nonlinear dynamics 

of rotor–bearing–seal system [23], the unbalanced 

rotor with nonlinear elastic restoring forces [24] 

and turbulent coupling stress fluid film journal 

bearings [25], are considered in the differential 

equation model. The nonlinear analysis method is 

then applied to analyze its dynamics behavior and 

the model is verified using the experiments. 

Although the dynamics characteristics of the 

system can be obtained from bifurcation and chaos 

method, its transient characteristics are not directly 

represented. Meanwhile, the differential equation 

model can not explicitly provide the inner coupling 

dynamics mechanism existed in multiple 

parameters domain and multi-fields.    
The generalized Hamiltonian control 

system, an important branch of nonlinear 

science, has been developed in recent years. Its 

structure matrix provides the connection 

information for the system parameters; while 

its damping matrix provides the damping 

characteristics on port of system parameters. 

The effect of the external input is represented 

in its input matrix [26-28]. It has opened a new 

route for investigating the rotor dynamics. The 

new approach is to integrate the shafting of the 

HTGS and its relative subsystem into the 

framework of the generalized Hamiltonian to 

reveal the coupling dynamics mechanism 

between the shafting and its relative 

subsystems. This work includes three parts.  

In the first part, the transient control and 

regulation of the HTGS is introduced into the 

shafting model so that it can be applied to 

investigate the transient responses of the 

shafting vibration. In the second part, we 

define the Lagrange function and its equation 

in relative value form, which is further 

transformed into the commonly used form for 

the convenient application to the multiple 

domains and multiple coupling forces. In the 

third part, we establish the generalized 

Hamiltonian control model. The proposed 

model will provide a foundation for the 

coupling dynamics theory which applies the 

generalized Hamiltonian theory to investigate 

coupling dynamics mechanism between the 

shafting vibration, the transient state of the 

hydro turbine generating sets and additional 

forces of the shafting.  

2 Shafting basic model 

Fig.1 is the schematic diagram of the shafting 

structure of HTGS. 

 

Fig.1 The shafting structure of the hydro turbine 

generating sets 
In Fig.1, B1, O1, B2, B3 and O2 are the 

geometric centers of the up guide bearing, the 

generator rotor, the lower guide bearing, the 

turbine bearing and the turbine runner, 

respectively. 

The mass central coordinates of the 

generator rotor is (x10, y10), then one has 

x10=x1+e1cosφ, y10=y1+e1sinφ, φ=t. As such, 

the mass central coordinate of the turbine 

runner is (x20, y20), then x20=x2+e2cosφ, 

y20=y2+e2sinφ. 

Assumption 1: the rotary components are rigid 

element, effects of the thrust bearing and 

spindle mass are ignored, and the twist of axis 

is also ignored. 

According to Assumption 1, the total 

kinetic energy of the HTGS, including the 

kinetic energy of the generator rotor and the 

hydro turbine runner, is:  
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where m1 and m2 are the mass of the generator 

rotor and the hydro turbine runner in kg, 

respectively; J1=m1R1
2
/2 and J2=m2R2

2
/2 are the 

rotary inertia of the generator rotor and the 

turbine runner in kg.m
2
, respectively; R1 and R2 

are the radius of the generator rotor and the 

turbine runner in m respectively. 

In Fig.1, denote |B1O1|=|O1B2|=a/2, |B2B3|=b, 

|B3O2|=c, r1
2
=(x1

2
+y1

2
), r2

2
=(x2

2
+y2

2
). From 

geometrical relationship in Fig.1, we have 
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Assumption 2: The structure parameters of the 

shafting a, b and c, as well as the stiffness 

coefficient of the bearing k1, k2 and k3 are 

constant. The change of gravitational potential 

energy is ignored in the HTGS operation. As 

such the potential energy of the shafting only 

includes elastic potential energy generated by 

the bearing.  

According to Assumption 2, the elastic 

potential energy of the HTGS shafting can be 

expressed as:  
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Assumption 3: The various damping of the 

shafting can be converted to the damping of 

the generator rotor and the turbine runner, and 

can be simplified as linear damping. Other 

forces acting on the shaft can be converted to 

the force of the generator rotor and the turbine 

runner respectively. 

Denote external forces acting on generator 

rotor be 1111 xx
FxcQ   , 1111 yy

FycQ   , 

and external forces acting  on turbine runner 

be  
2222 xx

FxcQ   , 
2222 yy

FycQ   . 

The additional forces acting on the 

generator include the unbalance magnetic pull. 

The additional forces acting on the hydro 

turbine runner include the sealing force and the 

unbalance force of the runner blade. These 

external forces keep their form and are taken as 

additional input excitation in the following 

derivation. As such, the proposed model is 

general and can be applied to analyze the 

multiple external forces. 

The Lagrange function of the system is 

defined as the difference of the kinetic energy 

and the potential energy of the system:  
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 (3) 

The generalized coordinate is selected as 

v={x1,y1,x2,y2}. Denote external forces be 

F={Qx1, Qy1, Qx2, Qy2 }. The Lagrange equation 

of the shafting is: 
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Expending Eq.(4) yields the differential 

equation model:  
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These equations are the basic forms of the 

HTGS shafting motion equations. 

In contrast to the current steady model, the 

angular acceleration   has been added into 

above equation. Since the angular speed ω is 

usually constant during the steady state 

operation, the angular acceleration   can then 

be approximated to   zero when the state of the 

HTGS shafting is steady. Based on this 

approximation, the motion equations of the 

HTGS shafting are the differential equations 

with four variables x1, y1, x2 and y2, and the 

motion equation of the rotary angle is not 

included. In the transient state, however, the 

angular speed change is larger, thus the items 

containing  should be kept.  

3 The relative value form of 
the Lagrange system 

3.1 Defining relative value system 

When the multiple subsystems are connected 

with the different argument regions, the 

parameter values can be several orders of 

magnitude or have different dimensional units. 

This may produce large calculation error or even 

unable to connect. In this case, the normalization 

method is a useful approach. The normalization 

method must keep the equivalence of their base 

value system. In this paper, the common motion 

between the shafting and the generator 

subsystems is the angular speed. Because the 

base value system of the generator subsystem 

has the whole definition, according to the 

equivalence principle, the generator rated power 

SgB is then chosen as the base value of the 

shafting. The base value SgB should be 

decomposed into the basic parameters of the 

generator rotor and the turbine runner to build 

the base value system for the shafting subsystem. 

As such, we have the following definitions.  

Definition 1: The mass, the displacement, the 

mechanical angular speed, the speed and the 

power base values of the generator rotor are 

chosen as m1B=m1, R1B=R1, ωmB, R1ωmB and SgB, 

respectively. The inertia time constant of the 

generator rotor is then defined as:  
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2
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                        (9) 

Definition 2: The mass, the displacement and 

the speed base values of the turbine runner are 

selected as m2B=m2, R2B=R2, and R2ωmB, 

respectively. The inertia time constant of the 

turbine runner is defined as:  

gB

2
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Using above base value system, the relative 

value form of the Lagrange function can be 

derived from (3) by dividing SgB. 
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 (11) 

where over bars denote the relative values of 

parameters, 
111

/ Ree  and 
222

/ Ree   are the 

mass eccentricity of the generator rotor and the 

hydro turbine runner respectively, 
111

/ Rxx  , 

111
/ Ryy  , 

222
/ Rxx  , 

222
/ Ryy  , 

)/( 2
mB11111

mKK  , )/( 2
mB22222

mKK  , 

)/( 4
mB212112gB12

RRmmKSK  . 

Multiplying the Eq. (4) by R1/MgB for i =1,2, 

and by R2/MgB for i=3,4 converts Eq. (4) into the 

relative value form of the Lagrange equation: 
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Accordingly, the external forces in relative 

values are converted to:  
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where gBmB
2
111

/ MRcc  , gBmB
2
222

/ MRcc  ,

gB111
/ MRFF

xx
 ,

gB111
/ MRFF

yy
 ,

gB222
/ MRFF

xx
 , gB222

/ MRFF
yy

 , 

MgB=SgB/ωmB. 

The dynamic system composed by the 

Lagrange function (3) and its equation (4) is 
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equivalent to the dynamic system composed by 

(11) and (12) in relative values. This result can 

be verified by expending Eq.(11) and Eq.(12). 

3.2 Angle and angular speed equation 

The mechanical angle φ and angular speed ω 

are included in the energy function of the 

system (6). Thus the motion equation of the 

shafting should include the angle as a variable 

to reflect the effect of the energy on the 

shafting motion characteristics. Meanwhile, the 

angular speed ω is a key variable that relates to 

the transient state of the HTGS. 

The external torque corresponding to the 

angle variable φ is Mt-Mg. Then the Lagrange 

equation of taking the angle as variable 

satisfies the following: 
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Dividing equation (14) by the rated torque of 

the generator MgB yields:  
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where MgB=SgB/ωmB is the base value of the 

generator rated torque, 
tgBt

mMM  , 

ggBg
mMM  , 

mB
/  , 

mB
/  . 

As such, the shafting motion differential 

equations, including the four displacement 

variables and the angle variable, have been 

integrated into the framework of the Lagrange 

system in relative values. 

4. Energy function 

4.1 Correction of the Lagrange function 

The rotary kinetic energy 2  in the Lagrange 

function (11) can be directly substituted 

by
2

1B
 , in which the ωB=314rad/s is the basic 

value of the electrical angular speed. This 

modification is for connection to generator, the 

reason will be give in next section 5. Other items 

remain unchanged, and the Lagrange function 

(11) is then rewritten as:   
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    (16) 

Above transformation should satisfy the 

basic hypothesis that the angular speed equation 

coincides with the different form of the 

Lagrange function. Therefore, the Lagrange 

equation of the angle variable is transformed 

into:   
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where t
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Substituting the Lagrange function (16) into 

(12), these equations can then be returned to the 

primary differential equations (5)~(8).  

4.2 The Hamiltonian function 

The generalized coordinates are selected as 

v={v1, v2, v3, v4, v5}, v1= 1 , v2= 1x , v3= 1y , 

v4= 2x , v5= 2y . The generalized momentums 

are defined as:   
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In fact, p2~p5 are the momentum of the mass 

centre in relative values, indicating that the 

definition of the generalized momentum 

described with relative values is consistent with 

the definition in the traditional dynamics. Thus, 

the replacement of the angular speed variable in 

the Lagrange function doesn’t change the energy 

characteristics of the shafting. 

The Hamiltonian function is selected as: 

)1(T)1( LH  vp                    (23) 

Expanding above equation yields:  
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Differentiating (23) with p yields: 
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Obviously, (v, p) is still dual variable. 

One of the purposes defining the generalized 

momentum is that the substitution of the 

differential items in the Hamiltonian function 

and equation can reduce the order of the 

equation. In this paper, the motion equation of 

the variables 1  and 1  will be substituted 

with the generator model while connecting the 

shafting model. Therefore, the speed item of the 

four axis variables will be substituted while the 

angular speed item will remain the same.  

Expressions of
1

x , 
1

y , 
2

x  and
2

y  can be 

derived from the generalized momentum, and 

are used to replace the speed items in the 

Hamiltonian function. For the value of 

ωB=314rad/s, 2
1

2
1B1 )41(

2

1
 eT j  is much larger 

than )1(
2

1
2

11 eT j . Therefore, )1(
2

1
2

11 eT j can 

be ignored. As such, the Hamiltonian function 

(24) can be written as the following: 
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(26) 

Meanwhile, the speed items of the four 

shafting variables included in the generalized 

momentum p1 should be replaced in the same 

way. As such, Eq.(25) has been changed due to 

this substitution.  

Combining the Hamiltonian function (24) 

with (18)~(22) yields the expressions of the 

generalized speed:  
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where )41()41( 2
22

2
11

eTeTT
jjj

 , is called 

the total inertia time constant.  

Furthermore, some of transformation 

expressions can be obtained from (26):  
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Substituting the generalized momentum (18) 

into the Lagrange equation (17) yields:  

)(
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L
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              (32) 

Substituting p2, p3, p4 and p5 into the 

Lagrange equations (12), and combining 
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(28)~(31) yields:  
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Equations (27)~(36) are expanded form of the 

Hamiltonian equation, and will be integrated 

into the generator model and rewritten as the 

standard form of the Hamiltonian model in next 

section. 

5 The Hamiltonian model for 
the generator 

As the Hamiltonian function and equation is not 

sole, selected different Hamiltonian function will 

yield different Hamiltonian equation. The 

Hamiltonian control model of the third order 

generator derived from basic energy relationship 

is as following [29]: 
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(37) 

The Hamiltonian function of the system is 
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 (38) 

where 11  ee  , e
 =ωe/ωB, Tj=J*ωmB

2
/SgB, 

Xd∑=Xd+XT+XL, Xd∑'=Xd'+XT+XL , 

Xq∑=Xq+XT+XL, Xd∑´=Xd´+XT+XL. 

   The link between the generator model and 

the shafting model is the angular speed motion 

equation. In order to explicit the connection, the 

Eq. (37) is restored back to the differential 

equation form:  
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               (39) 

where Dω1 is the additional modified item. 

The first item in the Hamiltonian function 

(38) should be the rotary kinetic energy of the 

HGTS. The Hamiltonian model for the generator 

is mainly applied to study its transient action. 

The rotary kinetic energy is much larger than 

other energy items in the Hamiltonian function, 

indicating that the impact of other energy item 

on the system transient is likely to be masked. 

On the other hands, the angular speed increment 

in relative value reflects the variations of the 

rotary kinetic energy in transient. Thus, the 

rotary kinetic energy can be replaced by the 

angular speed increment in relative value. 

Meanwhile, the angular speed change is very 

small when the HTGS is connected with the 

power system. The angular speed increment is 

multiplied by ωB to reflect the influence of the 

rotary kinetic energy. The readers are referred to 

[30] for the details of the explanation of the 

rationality of this description.  

The angular speed in Eq.(39) is the electric 

angular speed, and is denoted with subscript ‘e’. 

The relationship between the mechanical angle 

φm and the electric angle φe is φm=φe/pp, where 

the pp is the pole numbers of the generator. The 

relationship between the mechanical angular 

speed ωm and the electric angular speed ωe is 

ωm=ωe/pp; while the relationship between the 

base value of the mechanical angular speed ωmB 

and the base value of the electric angular speed 

ωeB is ωmB=ωeB/pp. Thus, the mechanical angular 
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speed is equal to the electric angular speed in 

relative value, 
me

  . In the shafting model, 

the subscript m of the mechanical angular speed 

is omitted. 

6. Uniform generalized Hamiltonian model 

From the generator model (39), the equation of 

the rotor angle δ is similar to the equation of the 

shafting angle
1

 . So the order of the system can 

be reduced by directly calculating 1 from δ. 

The relationship between the variable δ and the 

mechanical angle φ is: 

B1B1BB
)1(   

p
p  (40) 

Integrating (40) yields:  

piiii
pttttt /)]()([Δ)()(

1mB1 
   (41) 

Therefore, the generator subsystem can be 

combined with the shafting subsystem to form 

the uniform generalized Hamiltonian control 

model. 

As the increment in relative value of the 

electric angular speed is equal to one of the 

mechanical angular speed,
11

 
e

, new 

variables are then selected as z1=δ, z2= 1 , z3=Eq´, 

z4= 1x , z5= 1y , z6= 2x , z7= 2y , z8=p2, z9=p3, z10=p4, 

z11=p5.  

Because the rotary kinetic energy of the 

generator model and the shafting model is equal, 

summing their Hamiltonian functions yields the 

uniform Hamiltonian function:  
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(42) 

Integrating equations (28)~(31), (33)~(36) and (39) yields:  

)()()( zuzG
z

zTz 





H                                  (43) 

where： 
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Using the basic transformation of the following:  
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The model (43) can then be transformed into 

the standard form of generalized Hamiltonian 

control model: 

)()()]()([ zuzG
z

zRzJz 





H       (45) 

where J(z) is the antisymmetric matrix, R(z) is 

the symmetric matrix. 

Equation (45) can be proved by expanding 

it to restore back to the primary differential 

equation. 

Remark 1: The input control includes the 

hydro turbine torque 
t

m  and the generator 

excitation control
f

E , which means that the 

transient regulation and control of the HTGS is 

introduced into the shafting model. 

Furthermore, the hydro turbine and its 

hydraulic system and the governor can be 

introduced into the shafting model by means of 

t
m  while the excitation control system and the 

power system can be introduced into the 

shafting model by means of f
E . Thus, the 

proposed model provides a foundation for 

investigating the effects of the HTGS transient 

regulation, the HTGS objects and the HTGS 

controller on the shafting motion.  

Remark 2: The external forces
1x

F ,
1y

F , 

2x
F and

2y
F  are taken as additional input 

control to improve the generality and the 
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feasibility of the model. On one hand, if the 

external force acting on the shafting is 

considered, the equation (45) can be applied to 

simulate the effect of the external force on the 

shafting motion. On the other hand, the 

external force acting on the shafting can be 

decomposed and merged into the structure and 

damping matrix of the Hamiltonian system. As 

such, the effects and action mechanism 

between the shafting inner parameters and the 

external force can then be investigated by 

employing the structure analysis theory of the 

generalized Hamiltonian system.  

Remark 3: If the multiple fields coupling 

need to be considered in the rotor shafting 

modeling, the action forces of the multiple 

fields coupling can be transformed into the 

relative value and introduced into the shafting 

model through additional input control. Thus, 

equation (45) provides an approach for 

modelling the rotor shafting under the multiple 

fields coupling. 

7 Simulation 

In order to simulate the operation characteristics 

of the HTGS under the control and regulation, 

the whole HTGS system is used in the 

simulation, shown as in Fig.2. The governor uses 

classical parallel PID controller, and the 

excitation is a PI controller of reactive power. 

The hydro turbine and its hydraulic system is 

differential equation model with elastic water 

column. The generator model is classical one 

machine and infinite bus system with the third 

order. 

 
 

Fig.2 Sketch of the simulation system 

The actual hydro turbine generator set is 

taken as an example. Main parameters are:  

SgB=150MW, nr=125r/min, m1=7.32×10
5
kg, 

m2=2.4×10
5
kg, R1=4.646m, R2=1.708m,  

J1=7.9×10
6
N·m

2
, J2=3.5×10

5
N·m

2
, pp=24,  

ωmB=13.09rad/s, k1=0.2×10
9
N/m, 

k2=0.2×10
9
N/m, k3=0.35×10

9
N/m,  

c1=0.35×10
7
N·s/m, c2=0.25×10

7
N·s/m,  

a=4m, b=3m, c=1.2m, e1=1.0mm, e2=0.5mm. 

Three cases are simulated to verify the 

model. Case 1 considers the steady state for 

testing the model. Case 2 simulates the transient 

control to verify whether the model can reflect 

the change of the transient vibration of the 

shafting. Case 3 is to examine whether the 

model can reflect the effect of the external force. 

Case 1:  

The HTGS operates at the steady state with 

the active power being pe=0.8. All additional 

forces are not considered, namely Fx1= 

Fy1=Fx2=Fy2=0. 

 

(a) Central trajectory of the generator rotor                 

 

(b) Central trajectory of the turbine runner 

Fig.3 Center trajectories at the steady operation 
The central trajectory of the generator rotor 

and the hydro turbine runner is shown in Fig.3(a) 

and (b), respectively.  

The central trajectory of both the generator 

rotor and the turbine runner is closely related 

with the damping coefficients c1, c2 and the 

stiffness k1, k2, k3. When feature parameters are 

invariant and without the shafting additional 

forces, the vibration amplitude of the central 

trajectory is stable. The calculation result shown 

in Fig.3 is consistent with the actual situation. 

Case 2: 

The active power regulates from pe=0.8 to 

pe=1.0. All additional forces are not considered, 

namely Fx1=Fy1=Fx2=Fy2=0. 

PID 
Governor 

ω 

Transient shafting model 

Mg 

Turbine model with 
elastic water column 

PI 
Excitation control 

Third order 
generator model 

ut 

Mt ω 
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(a)  Amplitude of the generator rotor       

 

(b) Increment variation of the mechanical angular 

speed 

Fig.4 The variation of the amplitude and the 

mechanical angular speed under regulation active 

power versus time 
The vibration amplitude in x direct of the 

generator rotor at first 10 second is shown in Fig. 

4(a). The variation of the mechanical angular 

speed increment of the HTGS ω1m is shown in 

Fig.4(b).  

Under the governor PID controller, the 

variation of the angular speed in the transient 

state is very small. The vibration amplitude of 

the generator rotor and the turbine runner is 

small and similar to that under the steady state 

operation. Fig.4 shows that the shafting transient 

model can reflect the transient change of the 

shafting vibration in regulation process.  

In large disturbance, such as throw load, 

faulty at power grid side and low frequency 

oscillation, the variation of the angular speed is 

large, and so is the shafting vibration. The 

transient model proposed in this paper can be 

better applied to analysis large disturbance 

transient. 

Case 3: 

The HTGS operates at the steady state with 

the active power being pe=0.5. Additional forces 

acting on the generator rotor are not considered, 

namely Fx1=Fy1=0; while additional forces acting 

on the hydro turbine runner is considered. Here, 

the pressure impulse of the draft tube is also 

considered. 

According to the pressure impulse 

characteristics of the draft tube, the equivalent 

action force of the pressure impulse is assumed 

as:   

)65.02cos(01.02 tF x    

)65.02sin(01.02 tF y   ,  

The above assumption indicates that the 

frequency of the pressure impulse of the draft 

tube is 0.65Hz. The central vibration in the x 

direction of the generator rotor and the hydro 

turbine runner is shown in Fig.5(a) and Fig.5(b) 

respectively. 

 

(a)  Amplitude of the generator rotor  

 

(b) Amplitude of the hydro turbine runner 

Fig.5 The shafting vibration u under the pressure 

impulse of the draft tube 
In Fig.(5), the amplitude of the generator 

rotor is approximately invariant. The amplitude 

period of the turbine runner vibration is 

consistent with the period of the pressure 

impulse in the draft tube. In order to be clear, 

central trajectory of the generator rotor and the 

hydro turbine runner under the pressure impulse 

of the draft tube are plotted in Fig.6 (a) and (b) 

respectively.  
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(a)  Central trajectory of the generator rotor    

 

(b) Central trajectory of the turbine runner 

Fig.6 The central trajectory under the pressure 

impulse of the draft tube 

In Fig.6, the vibration of the turbine runner 

is obvious, and the period feature is clear. 

Comparing the Fig.3 (a) and Fig.6 (a), the 

central trajectory line is thicker, indicating that 

the trajectory circle is slight swing due to the 

pressure impulse of the draft tube. This kind of 

vibration difference relates to the shafting 

geometry structure and acted position of the 

external force. The transient model better 

reflects the vibrations case.    

These simulations show that the proposed 

model is flexible and can be applied to 

investigate the various shafting issues. 

8. Conclusions 

The following conclusions can be drawn from 

this study:  

(1). Different variable domains can be 

transformed into relative value form by using the 

equivalent base value transformation system. As 

such, the connection of the multiple subsystems 

is realized. In proper base value system, the 

form of the Lagrange function and equation keep 

their basic forms. 
(2). The proposed generalized Hamiltonian 

control model includes additional input item, 

which opens a new research approach and 

modeling method for simulating the shafting under 

the multiple domains and factors. 
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